

ProtaStructure Suite 2026 – Nowości

Version: 1.0

Czerwiec 2025

Limitation of Responsibilities	while Prota ensures every new update is tested, Prota shall not be held responsible for any losses caused by documentation, software, or usage errors.						
	In addition to Prota License Agreement Terms, it is the responsibility of the user:						
	 to check results generated by documentation and software, make sure that the users of the software and their supervisors have adequate technical capabilities, Ensure the software is appropriately used according to the reference manual and documentation. 						
Intellectual Property	ProtaStructure is a registered trademark of Prota Yazılım Bilişim ve Mühendislik A.Ş., and all intellectual property rights belong to Prota Yazılım Bilişim ve Mühendislik A.Ş. Documentation, training, reference manuals, and any program component cannot be copied, distributed, and						

Trademarks ProtaStructure[®], ProtaDetails[®], ProtaSteel[®], and ProtaBIM[®] are registered trademarks of Prota Software Inc. Prota logo is a trademark of Prota Software Inc.

used in violation of the license agreement.

Spis treści

Wprowadzenie	5
Całkowicie nowe narzędzia	7
Nowy moduł schodów żelbetowych	8
Nowy moduł projektu płyty podstawy słupa	9
Ściany, belki i płyty podpiwniczenia	10
Projekt słupów o przekroju krzyżowym	11
Postumenty fundamentowe	12
Zdefiniowane przez użytkownika widma we wszystkich kierunkach	13
Rozszerzone wsparcie norm i projektowania	14
Ocena wydajności i wzmocnienia zgodnie z normą ASCE/SEI 41-17	15
Ocena wydajności i wzmocnienia zgodnie z Eurokodem 8 — część 3	16
Projektowanie sejsmiczne elementów stalowych i żelbetowych zgodnie z Eurokodem 8	
Modalna analiza pionowego trzęsienia ziemi	24
Konfigurowalne pionowe spektrum Eurokodu	25
Sprawdzenie szerokości rys	
Norma IS: Kontrola przeniesienia obciążeń ze słupa na fundament	
Projektowanie belek wiążących fundament według ACI318	
Minimalna głębokość stopy do zastosowania prętów bocznych	33
Maksymalna głębokość stopy fundamentowej	34
Ulepszenia analizy	35
Kontrole przebicia za pomocą MES	36
Uwzględnienie obwiedni słupów	36
Edytowalna mimośrodowość przypadkowa i współczynnik bezpieczeństwa przed wywróceniem	
Wyznaczanie kondygnacji jako "pośrednie'	40
Siatkowanie płyt na tej samej kondygnacji ułożonych jedna nad drugą	41
Zastosowanie siatki czworokątnej do płyt w analizie metodą elementów skończonych	42
Modyfikatory sztywności ścian usztywniających tylko na kondygnacjach krytycznych	43
Automatyczne ograniczenia bryłowe w obrysach słupów	45
Automatyczna konwersja jednostek dla ruchów gruntu	46
Modelowanie i Wizualizacja	47
Edytor skrótów klawiszowych z możliwością dostosowania	48
Nakładanie rysunku DXF w Edytorze obciążeń	50
Uciąglone rygle i płatwie	53
Reakcje podpór wyświetlane w module post-processingu analizy	55

PROTA SOFTWARE

Legenda konturów na dole w postprocesorze analizy	56
Domyślne materiały przypisane wyłącznie do elementów stalowych	57
Nowe typy blach trapezowych w bibliotece	58
Kolorowe przedstawienie współczynnika wykorzystania dla elementów żelbetowych	60
Przypisanie kolorów do obciążeń	61
Liczba trzpieni i ugięcie w etykietach belek ramowych	63
Przypisywanie podpór i wsporników konstrukcji ramowej	64
Optymalizacja menu wstążki I kontekstowego	65
Przypisanie elementów ramy do kondygnacji	66
Wyszukiwanie według etykiet w module analizy wyników	67
Zaawansowana integracja BIM	68
Wsparcie dla formatu IFC4	69
Zestawienie elementów stalowych w Prota Structure	71
Detalowanie żelbetu	75
Detale ścian podpiwniczenia	80
Detale postumentów	81
Innowacje w Prota Steel	83
Połączenia płatwi na belkach giętych	85
Połączenia z przykładki środnika do głównych elementów SHS i RHS	86
Wsparcie IFC4	87
Co dalej?	88
Thank You	89

Wprowadzenie

Jako firma Prota od ponad 40 lat tworzymy wiodące oprogramowanie BIM do projektowania konstrukcji.

Priorytetami naszej strategii produktowej zawsze były:

- 1. Dostarczanie nowych, praktycznych metod modelowania.
- 2. Wprowadzanie innowacyjnych technologii projektowania, które zwiększą wartość Twojej firmy i poszerzą zestaw narzędzi wykorzystywanych w codziennej praktyce inżynierskiej.
- 3. Ulepszanie istniejących funkcji.
- 4. Wprowadzenie większej lokalizacji w naszych produktach, abyś mógł lepiej korzystać z naszej technologii.

ProtaStructure 2025 to nasze najnowsze wydanie, znaczący krok w kierunku realizacji tej strategii, podniesienia poprzeczki dla konkurencji i spełnienia oczekiwań użytkowników. Opracowanie kompleksowego rozwiązania do analizy, projektowania i szczegółowego opracowywania konstrukcji BIM jest wymagającym zadaniem zespołowym, mającym na celu spełnienie oczekiwań zarówno użytkowników, jak i całej branży. Serdecznie dziękujemy wszystkim naszym użytkownikom za zaufanie do naszych produktów.

Jesteśmy przekonani, że spodobają się Państwu funkcje i ulepszenia wprowadzone w pakiecie ProtaStructure Suite 2026. Szczegółowe informacje można znaleźć na kolejnych stronach.

Dziękujemy za wybór ProtaStructure.

陊 PROTA SOFTWARE

ProtaStructure 2026: Innowacja spotyka jakość

W naszej najnowszej, przełomowej wersji ProtaStructure 2026 z radością przedstawiamy szereg innowacyjnych funkcji zaprojektowanych z myślą o poprawie doświadczeń użytkowników oraz zwiększeniu wydajności pracy. Naszym głównym celem było rozszerzenie wsparcia dla obowiązujących norm projektowych, poprawa stabilności i wydajności programu, a także uwzględnienie cennych opinii użytkowników.

Oto najważniejsze usprawnienia i nowe funkcje w ProtaStructure 2026:

- Nowy interaktywny moduł schodów żelbetowych,
- Modelowanie i projektowanie płyt podstawy w ProtaStructure,
- Projektowanie słupów krzyżowych,
- Ściany i płyty podpiwniczenia,
- Modelowanie i projektowanie postumentów,
- Widma sejsmiczne zdefiniowane przez użytkownika w trzech ortogonalnych kierunkach uproszczony proces pracy,
- Ocena stanu technicznego i wzmocnienia zgodnie z ASCE/SEI 41,
- Ocena stanu technicznego i wzmocnienia według Eurokodu 8 Część 3 (EN1998-3:2005),
- Edytor narodowo określonych parametrów Eurokodu (NDP),
- Projektowanie sejsmiczne według Eurokodu 8 dla elementów stalowych i żelbetowych,
- Konfigurowalne widmo trzęsienia ziemi w kierunku pionowym według Eurokodu 8,
- Ulepszone sprawdzanie nieregularności i kontroli budynków według Eurokodu 8,
- Ugięcia długoterminowe z uwzględnieniem pełzania i skurczu według Eurokodu 2,
- Projektowanie belek ażurowych zgodnie z Eurokodem 3,
- Sprawdzenie szerokości rys w belkach, żebrowanych i płytach żelbetowych (wg norm US, EC, IS i innych),
- Konfigurowalny edytor skrótów klawiaturowych,
- Nowe wsparcie dla formatu IFC 4 oraz szablonu BCA IFC-Singapore dla platformy CoreNetX,
- Nowe układy zbrojenia dla płyt,
- Zestawienia zbrojenia dla belek fundamentowych, belek żebrowych i płyt,
- Rysunki przekrojów budynków obejmujące wszystkie kondygnacje i ściany wypełniające,
- Rozbudowane ulepszenia w ProtaSteel, w tym eksport sił wewnętrznych do IdeaStatica, nowy moduł rysunkowy z funkcją cofania, nowe i ulepszone makra połączeń i wiele więcej...

Szczegółowe informacje oraz dalsze elementy znajdują się na kolejnych stronach. Zachęcamy do zapoznania się z artykułem.

Całkowicie nowe narzędzia

😢 PROTA SOFTWARE

Nowy moduł schodów żelbetowych

Z ogromną przyjemnością przedstawiamy nasz nowy moduł schodów żelbetowych – efekt intensywnej pracy naszego zespołu. To innowacyjne narzędzie umożliwia interaktywne modelowanie schodów żelbetowych oraz ich płynną integrację z modelem budynku, wykorzystując bibliotekę często stosowanych typów schodów (funkcjonalność tworzenia własnych typów schodów będzie dostępna już wkrótce i obejmie więcej gotowych wariantów).

Nowy moduł schodów żelbetowych pozwala z łatwością zamodelować schody w obrębie budynku oraz utworzyć zintegrowany model MES, który zawiera schody z odpowiednim podziałem siatki. Wyniki analizy są automatycznie pobierane z modelu MES i wykorzystywane do projektowania biegów i spoczników, wspierane szczegółowym raportem oraz rysunkami wykonawczymi.

陊 PROTA SOFTWARE

Nowy moduł projektu płyty podstawy słupa

Opracowaliśmy kompleksowe makro parametryczne do wstawiania płyt podstawy pod słupy stalowe, które umożliwia również ich wizualizację zarówno w rzutach, jak i w widoku 3D.

Oprócz funkcjonalności dostępnych już w ProtaSteel, ProtaStructure 2026 wprowadza zupełnie nowe makro do modelowania i projektowania płyt podstawy, zintegrowane bezpośrednio z ProtaStructure. To zaawansowane narzędzie pozwala na precyzyjne i efektywne modelowanie płyt podstawy, zapewniając optymalne projektowanie i wydajność. Dzięki przyjaznemu interfejsowi i zaawansowanym funkcjom nowe makro upraszcza proces projektowy zgodnie z normami ACI318, AISC360, przewodnikami projektowymi AISC, EC2, EC3 oraz normami tureckimi, w tym projektowaniem kotwienia.

Ważne:

Nowy moduł płyt obsługuje obliczenia analityczne tylko dla wybranych konfiguracji usztywnień i śrub w profilach dwuteowych oraz skrzynkowych. Projektowanie płyt podstawy o charakterze ogólnym staje się zbyt złożone, by uwzględnić wszystkie możliwe przypadki. Płyty podstawy w ProtaStructure można przekazać do ProtaSteel w celu wykonania detali lub do IdeaStatica w celu analizy metodą CBFEM (jeśli to wymagane).

Steel Base Plate Design - 1C12			- 🗆 X
Structural Components	- Anchor Properties		and the second s
Base Plate & Placement	Material	Clace 5.8	I we want
Anchor & Stiffener Properties	Protection.	Cid33 510 R	Cal Francisco
Foundation, Shear Lug & Weld	Anchor Diameter:	M22 ¥	
Design	Anchor Bolt Tolerance:	2.0 mm	
Internal Forces & Moments	Embedded Length:	280.0 mm	
Analysis Results	: Head Type:	Circular	
Results Report		Square	
	Head Plate Length:	80.0 mm	
	Head Plate Thickness:	40.0 mm	
ЛЛЛ	Stiffener Properties		
	Material:	S235 🕨	
	Length:	95.0 mm	
	Width:	80.0 mm	
STUE STRV ASTRO	Thickness:	12.0 mm	
	Top Chamfer Length:	20.0 mm	
	Bottom Chamfer Length:	20.0 mm	
			×

😢 PROTA SOFTWARE

Ściany, belki i płyty podpiwniczenia

Ściany podpiwniczenia zazwyczaj są traktowane jako część fundamentu i zapewniają podparcie dla wypełnień na kondygnacji parteru oraz utrzymują nasyp na fundamencie. ProtaStructure 2026 umożliwia użytkownikom modelowanie tych ścian na poziomie fundamentu oraz opcjonalne uwzględnienie ich w analizie. Wcześniej modelowanie tych ścian było trudniejsze i wymagało dodawania dodatkowych kondygnacji lub głębokich belek.

Podobnie jak ściany podpiwniczenia, belki i płyty podpiwniczenia również są traktowane jako część fundamentu. Zazwyczaj są one wykonane na nasypie utrzymywanym przez ściany podpiwniczenia. Płyty podpiwniczenia zbrojone są siatką zbrojeniową. ProtaStructure pozwala teraz na modelowanie tych belek i płyt jako części fundamentu oraz na kompatybilne tworzenie siatki z sąsiednimi elementami. Wcześniej nie było możliwe wstawianie i siatkowanie tych płyt na płycie fundamentowej na różnych poziomach wysokości).

Projekt słupów o przekroju krzyżowym

W ProtaStructure 2026 z radością wprowadzamy możliwość projektowania symetrycznych krzyżowych słupów, oferując zaawansowaną zgodność z normami AISC 360, tureckimi normami stalowymi, Eurokodami, normami BS, a także normami indyjskimi i brazylijskimi.

Nowa funkcja przynosi znaczące korzyści inżynierom konstrukcyjnym, zwiększając ich zdolność do projektowania słupów o wyższej nośności i odporności na wyboczenie.

Słupy krzyżowe, charakteryzujące się unikalnym, krzyżowym przekrojem poprzecznym, są teraz łatwiejsze do włączenia w projekty konstrukcyjne, zapewniając wyjątkową stabilność i wytrzymałość. Słupy te są idealne dla budynków wysokich oraz mostów, ze względu na korzystny stosunek wytrzymałości do masy, efektywne rozłożenie obciążeń oraz zmniejszone zużycie materiału.

Dzięki ProtaStructure 2026 możesz optymalizować swoje projekty pod kątem lepszej wydajności i szybszej realizacji budowy, jednocześnie spełniając rygorystyczne wymagania różnych międzynarodowych norm.

🜔 PROTA SOFTWARE

Postumenty fundamentowe

ProtaStructure 2026 wprowadza nową funkcję, która upraszcza projektowanie i analizę betonowych postumentów pod słupami stalowymi. Użytkownicy mogą bezproblemowo je wstawiać, definiować ich wymiary oraz integrować je z modelami konstrukcyjnymi, co pozwala na optymalizację procesu projektowego.

Gdy pod słupem stalowym określona zostanie płyta podstawy, system automatycznie wykrywa obecność postumentu, umożliwiając dokładne projektowanie kotew i zapewniając spójność z wymaganiami konstrukcyjnymi. Ponadto, menu projektowania słupa ułatwia projektowanie zbrojenia podłużnego oraz strzemion, co dodatkowo usprawnia proces wykonywania detali.

Dla użytkowników korzystających ze zintegrowanych modeli fundamentów lub analizy fundamentów metodą elementów skończonych (MES), cokoły są modelowane jako elementy ramowe MES, co gwarantuje precyzyjną reprezentację konstrukcyjną.

To usprawnienie zwiększa zarówno efektywność, jak i dokładność modelowania fundamentów, czyniąc je istotnym uzupełnieniem zaawansowanych możliwości ProtaStructure 2026.

Wcześniej użytkownicy musieli polegać na bardziej ręcznych i mniej zintegrowanych metodach modelowania oraz projektowania betonowych postumentów pod słupami stalowymi, co wiązało się z większym nakładem pracy oraz potencjalnymi niespójnościami. Projektowanie kotew, detale zbrojenia oraz integracja z płytami podstawy nie były automatyczne ani płynnie powiązane w ramach procesu projektowego.

Zdefiniowane przez użytkownika widma we wszystkich kierunkach

ProtaStructure automatycznie oblicza elastyczne oraz projektowe widma przyspieszeń zgodnie z międzynarodowymi normami sejsmicznymi, wykorzystując wysoce parametryczny interfejs użytkownika, który w przejrzysty sposób zawiera parametry specyficzne dla poszczególnych norm, umożliwiając użytkownikom ich dostosowanie do wymagań projektu.

Ponadto ProtaStructure pozwala na zastosowanie widm przyspieszeń zdefiniowanych przez użytkownika, co jest szczególnie przydatne w sytuacjach wymagających badań specyficznych dla danego terenu.

W wersji ProtaStructure 2026 wprowadzono nową, zaawansowaną funkcję, umożliwiającą inżynierom importowanie dowolnej liczby funkcji widm przyspieszeń zdefiniowanych przez użytkownika oraz przypisywanie różnych krzywych spektralnych w kierunkach X, Y i Z. Nowy interfejs użytkownika oferuje lepszą wizualizację, możliwość porównania spektrów oraz uproszczone funkcje importu i eksportu.

To usprawnienie zapewnia większą elastyczność i precyzję w analizie sejsmicznej, pozwalając użytkownikom na precyzyjne dopasowanie projektów do specyficznych wymagań oraz regionalnych warunków sejsmicznych.

Strona - 14

Rozszerzone wsparcie norm i projektowania

Ocena wydajności i wzmocnienia zgodnie z normą ASCE/SEI 41-17

ProtaStructure oferuje unikalny i zaawansowany proces oceny wydajności oraz wzmocnień budynków, oparty na nieliniowej analizie pushover jedno- i wielomodowej oraz nieliniowej analizie czasowej, z pełnym, szczegółowym raportem oceny każdego elementu konstrukcyjnego.

Cały ten zestaw zaawansowanych funkcji jest teraz w pełni zgodny z procedurami ASCE/SEI 41-17 oraz poziomami zagrożenia sejsmicznego, takimi jak BSE-2N, BSE-2E, BSE-1N i BSE-1E.

Ocena wydajności i wzmocnienia zgodnie z Eurokodem 8 – część 3

ProtaStructure oferuje unikalny i zaawansowany proces oceny wydajności oraz wzmocnienia budynków, oparty na nieliniowej analizie pushover jedno- i wielomodowej oraz nieliniowej analizie czasowej, wraz z pełnym, szczegółowym raportem oceny każdego elementu konstrukcyjnego.

Cały ten zestaw zaawansowanych funkcji jest teraz w pełni zgodny z procedurami Eurokodu 8 — Część 3 (EN 1998-3:2005), obejmującymi analizy nieliniowe oraz podejście oparte na współczynniku redukcji.

Uwaga:

Jest to praca w toku i znajduje się jeszcze w fazie testów. Realizacja jest nieco opóźniona względem harmonogramu. Planujemy ją zakończyć wkrótce po wydaniu Prota 2026. Równocześnie dążymy do przygotowania przewodnika projektowego na ten temat.

Edytor parametrów krajowych (NDP) dla Eurokodu

ProtaStructure 2026 wprowadza zaawansowany Edytor Parametrów Określonych Krajowo (NDP), który umożliwia użytkownikom łatwe dostosowanie parametrów Eurokodu do wymagań ich krajowych norm.

Ta innowacyjna funkcja zapewnia wyjątkową elastyczność, pozwalając inżynierom precyzyjnie i wygodnie adaptować projekty do specyficznych wymagań regionalnych. Dzięki wsparciu różnych norm krajowych, ProtaStructure 2026 daje inżynierom możliwość tworzenia zgodnych z przepisami oraz zoptymalizowanych rozwiązań konstrukcyjnych w szerokim zakresie projektów.

arch Settings P	Select Materia	al 🗸 Sele	t Element 👻 Searc	h Settings P Reset Filters Reset to Default						
ProtaStructure Environment	Parameters	Value	Clause	Description						
ProtaDetails Environment	# Eurocod	e: EC-0								
Project Preferences	γ _{G,j,sup}	1.35	Table A1.2(A)	Unfavourable permanent action coefficient						
no Unit and Format	γ _{G,j,inf}	1.15	Table A1.2(A)	Favourable permanent action coefficient						
Label	Y0,1	1.5	Table A1.2(A)	Unfavourable leading variable action coefficient						
Codes	YO,I	1.5	Table A1.2(A)	Unfavourable accompanying variable action coefficient						
General	Ψο	0.7	Table A1.1	Combination Value Factor - Imposed Loads (Categories A to G)						
Lateral Loading	Ψ _{0, roof}	0.7	Table A1.1	Combination Value Factor - Imposed Roof Loads						
🟹 Lateral Drift & Bracing	Ψ _{0, snow}	0.7	Table A1.1	Combination Value Factor - Snow Loads						
a colore a channell	Ψ ₀ , wind	0.6	Table A1.1	Combination Value Factor - Wind Loads						
Beam	Ψ ₂	0.3	Table A1.1	Quasi-permanent Value Factor - Imposed Loads (Cat. A to G)						
⊃ Slab	Ψ ₂ , roof	0.3	Table A1.1	Quasi-permanent Value Factor - Imposed Roof Loads						
Foundation	Ψ ₂ snow	0.2	Table A1.1	Ouasi-permanent Value Factor - Snow Loads						
Stairs	Eurocode: EC-2									
Steel Settings	arr	1	3.1.6 (1)P	Compressive strength coefficient for long term and unfavourable effects						
Composite Member Settings	k1	0.44	5.5 (4)	Beam bending moment redistribution coefficient						
Analytical Model Settings	k ₂	1.25	5.5 (4)	Beam bending moment redistribution coefficient						
]⁺ Load Editor Settings	k ₂	0.54	5.5 (4)	Beam bending moment redistribution coefficient						
Assessment settings	k,	1.25	5,5 (4)	Beam bending moment redistribution coefficient						
Scales	Code	0.18	6.2.2 (1)	Coefficient for shear resistance of members not requiring design shear reinforcement						
Rebar	Vmin	0.035	6.2.2 (1)	Minimum shear stress						
Plan Details	k1	0.15	6.2.2 (1)	Shear strength factor						
Template Management	v	0.6	6.2.2 (2)	Strength reduction factor for concrete cracked in shear						
	<	1222		>						

Edytor NDP jest dostępny w menu Opcje > Parametry Określone Krajowo.

Wyszukiwanie i filtrowanie

Nowy edytor NDP oferuje wygodną funkcję wyszukiwania i filtrowania, dzięki której możesz zawęzić listę parametrów według materiału, projektowanego elementu lub dowolnego powiązanego słowa kluczowego.

Domyślnie edytor NDP jest podzielony na kategorie zgodne z obsługiwanymi normami, takimi jak Eurokod 2, Eurokod 3, Eurokod 4 oraz Eurokod 8.

Ponowne wykorzystanie parametrów w innych projektach

Parametry określone krajowo (NDP), które dostosujesz, są zapisywane jako część projektu. Możesz utworzyć nowy szablon z tymi parametrami, aby móc je wykorzystać w innych swoich projektach.

Projektowanie sejsmiczne elementów stalowych i żelbetowych zgodnie z Eurokodem 8

ProtaStructure 2026 oferuje bardziej kompleksowe wsparcie dla weryfikacji projektów sejsmicznych budynków stalowych i betonowych, zgodnie z wymaganiami Eurokodu 8, wraz ze szczegółowymi raportami krok po kroku.

Mar / Mat = 345.1 kN m / 225.2 kN m = 1.5 > 1.3 Sufficient v

V Direction

Joint	Member	Section (mm)	Moment Capacity, Mr(+) (kN.m)	Moment Capacity, M ₁ (-) (kN.m)
2C5	2C5 - Storey 2	600/300	78.9	78.9
+ 1B13	1C5 - Storey 1	600/300	80.4	80.4
105	1813	250/500	77.0	77.0

Shear Design Details

Cross-Section Dimension Check Critical Region Length Minimum Link Diameter Maximum Link Spacing Critical Region Spacing Axial Load Ratio Limit um Shear Resistance

DCH DuH b = 250.0 ≥ 2500 mm $\sqrt{(EC4, 5.5.12.2)}$ b ≥ max(h₂ b = 6.0 m) = 1.125 m (EC-4, 5.5.32.2 (4)) d₁ ≥ (6mm, d₂, 4), d₂ = 8 mm $\sqrt{(EC2, 9.5.3 (1))}$ stume (400 mm, bc, h₂ 20d₄), 150 ≤ 250 mm $\sqrt{(EC2, 9.5.3 (3))}$ sm₂=0.6 °(175 mm, bd, 30, d₄), 50 ≤ 83 mm $\sqrt{(EC4, 9.5.3 2.2 (12))}$ $v_4 = N_{24}/A_{dac} < 0.55$, 0.47 ≤ 0.55 $\sqrt{(EC4, 9.5.3 2.2 (12))}$ V_{Rd,max} = 0 v1 = 0.54 = acmbacZv1fcd/(cot0 + tan0) (EC-2, 6.2.3) ace = 1 θ = 0.380481776934764 V_{Rd,max} = 506.3 kN V_{Rd,s} = A_{max}Zf_{ymd}cot0 = 819.6 kN (EC-2 , 6.2.3)

Column-Beam Joint Shear Report

Eurococ	le 8 le 2 (UK)		(EN 1998) Desig (EN 1992) Desig	sign of Structures for Earthquake Resistance (Base Code) sign of Concrete Structures (UK Annex)											
Vpd Vc Vd bw bj Aat Asz		Honzontal The shear The shear Thickness The effectr The area o The area o	shear force acting o force in the column force in the column of confined parts of ve joint width if the beam top reinf if the beam top reinf	n the concr above the j above the j a wall secti orcement orcement	ete care of t oint, from th oint, from th on, or width	the joints e analysis e analysis of the wet	in the seisr in the seisr of a beam	nic design nic design	situation situation						
Vind Vid Vind,mask Vind,mask Vind,mask	VeaFydAut + A Nad / (fat b h) 0.6 (1 - fax /25 η fad (1 - va / r 80% (η fad(1 - Checks	a2) - Vε 0))) ³⁴² b ₁ h ₂ va / η) ¹⁴² b ₁ hc)	f _{ct} is given in MPa (Confined) (Unconfined)	EC 8 (5.2) EC 8 (5.5) EC 8 (5.5) EC 8 (5.3) EC 8 (5.5)	2) 3.3) (3) 3.3) 3) 3.3) (2) b										
Joint		Confined	Member	bj (mm)	h (mm)	Va / Va (kN)	Vc (kN)	As, Top (mm2)	Aster (mm2)	η	Vd	Vjut (kN)	Vjhd.tin (kN		
	2C5	No	2C5 - Storey 2	300.0	600.0	6.1	6.1	-	-			212.4	1215		
	 1B13 	No	1C5 - Storey 1	300.0	600.0	9.7	6.1	-	-	0.54	0.1	212.4	1215		
								402 421	100 101						

Y Direction Checks

Joint			Confined	Member	bj (mm)	h (mm)	Va / Va (kN)	Vc (kN)	As,Top (mm2)	As.Bot (mm2)	η	ve	Vjhd (kN)	Vjad timit (kN)
	2C5		No	2C5 - Storey 2	400.0	300.0	6.7	2.0	-	-	-		435.1	810.6
1B6	+	185	No	1C5 - Storey 1	400.0	300.0	2.0	2.0	-		0.54	0.1	435.1	810.6
105			1B6	-	-	- 1	-	402.12	402.12	-	-			
	1		185					402.12	402.12	-				

Weryfikacja nieregularności skrętnej według Eurokodu 8 z użyciem promienia skrętu

ProtaStructure już teraz oferuje metodę "Przemieszczenia względnego" do wykrywania nieregularności skrętnej, nawet dla skomplikowanych planów kondygnacji i układów konstrukcyjnych, gdzie podejście "Promienia Skrętu" według Eurokodu może nie być odpowiednie. W ProtaStructure 2026 opcjonalnie wprowadziliśmy podejście oparte na promieniu skrętu, które umożliwia użytkownikom przeprowadzenie kontroli skrętu kondygnacji zgodnie z procedurą opisaną w Eurokodzie 8, punkcie 4.2.3.2, oraz odpowiednimi wytycznymi projektowymi.

Metodę "Promienia Skrętu" można aktywować, włączając opcję "Plan elastyczny skrętnie: automatyczne wykrywanie na podstawie promienia skrętu" w oknie Parametry Sejsmiczne > Nieregularności konstrukcyjne. Domyślnie stosowana jest metoda "Przemieszczenia poprzecznego", która uwzględnia trójwymiarowe zachowanie i sztywność konstrukcji.

Uwaga

Metoda promienia skrętnego (Torsional Radius Method) wykorzystuje współrzędne środka sztywności, które są przybliżenie wyznaczane na podstawie wartości El słupów i ścian. Środek sztywności jest wykorzystywany w ProtaStructure wyłącznie do celów wizualizacji i nie jest zwykle używany w obliczeniach.

Zgodnie z Eurokodem, wyznaczanie promienia skrętnego na podstawie środka sztywności jest dopuszczalne tylko dla jednorodnych układów konstrukcyjnych. Metoda ta została wprowadzona do oprogramowania jako alternatywa dla metody ugięć poziomych (lateral drift method), jednak należy stosować ją ostrożnie, z uwzględnieniem charakterystyki układu konstrukcyjnego danego obiektu..

Automatyczne wyznaczanie współczynnika dominującego trybu zniszczenia (kw) zgodnie z Eurokodem 8

Współczynnik dominującego trybu zniszczenia, kw, według Eurokodu 8 odgrywa kluczową rolę w projektowaniu sejsmicznym. Służy on do modyfikacji współczynnika q, który reprezentuje redukcję sił sejsmicznych wynikającą z nieliniowego zachowania konstrukcji. Współczynnik obliczany jest jako: q = $q_o.k_w$, gdzie q_o to podstawowa wartość współczynnika, zależna od układu konstrukcyjnego i jego regularności w elewacji.

Współczynnik kw odzwierciedla dominujący tryb zniszczenia w konstrukcjach ścianowych, równoważnych ścianom oraz konstrukcjach elastycznych skrętnie. Uwzględnia on wpływ trybu zniszczenia na zdolność konstrukcji do tłumienia energii. Na przykład konstrukcje o ciągliwych trybach zniszczenia mogą rozpraszać więcej energii podczas zdarzeń sejsmicznych, co skutkuje wyższymi wartościami kw. Takie dostosowanie zapewnia, że projekt dokładnie odzwierciedla przewidywane zachowanie konstrukcji pod obciążeniami sejsmicznymi.

Obliczenia współczynnika kw realizowane są według wzorów 5.2 i 5.3 normy:

$$1,00 \text{ for frame and frame - equivalent systems} \\ k_w = \{ 0.5 \le \frac{(1 + \alpha_o)}{3} \le 1, \text{ for wall, wall - equivalent and torsionally flexible systems} \}$$

$$\alpha_o = \sum h_{wi} / \sum l_{wi}$$

Aby automatycznie obliczyć współczynnik dominującego trybu zniszczenia (kw) w ProtaStructure:

- 1. Otwórz okno Parametry sejsmiczne.
- 2. Kliknij przycisk Oblicz znajdujący się obok pola Współczynnik dominującego trybu zniszczenia (kw) w Kierunku 1 lub Kierunku 2.
- 3. W zależności od układu konstrukcyjnego program automatycznie wyliczy wartość kw i wyświetli szczegóły w małym oknie komunikatu.

Eurokod 8 – Obwiednia momentów i sił tnących dla ścian nośnych

Kolejnym istotnym usprawnieniem w nowej wersji jest zastosowanie obwiedni momentów zginających i sił tnących w ścianach nośnych.

Aby zapewnić, że ściany nośne o ciągliwym charakterze (dla których stosunek wysokości do długości wynosi Hw/Lw \geq 2) pozostaną sprężyste powyżej przegubu plastycznego u podstawy – z uwzględnieniem niepewności związanych z dynamicznym zachowaniem konstrukcji – momenty zginające i siły tnące uzyskane z analizy są odpowiednio powiększane.

ProtaStructure automatycznie uwzględnia przesunięcie strefy rozciągania i stosuje obwiednie momentów oraz sił tnących zgodnie z procedurą opisaną w Eurokodzie 8 – punkt 5.4.2.4.

Geod.			I	H E	۳. ¢			(🔒 Paste E	Bars					
ndardisa	tion	Envelope D	Height C	heck F	etungs and Parameters	Filter	Defined I	Loads Edit	py bars	Araste E	Bars to All					
der(s) t)/from h	ere,														
ey	b1 (mm)	1 (n	o3 nm)	Design Status	Utili	zation atio	Prin	nt Q	įty	Wall ir	n Critical H	eight	SI	upplied teel(%)	Steel Bar	s
	5250	2	50	~	0	.22	~]	0		~			0.46	4x6Ø12	+ 2x20
	525 525 525	Wall Desig	gn Momer ne:	nt Envelop	oes			4 I			Loa	ad Case:				(20) 2x2) 2x2)
	525	C - 2 (1W	/1) 🗸	\Leftrightarrow							8	- Ex + (Equ	iv. Static S	Geismic X (E	+)) 🗸	2×20
	525 525	Storey	Wall	b1 (mm)	b2 (mm)	Wall Angle	Critical Wall	Ma-Bot (k N.m)	Md-Bot (k N.m)	Ma-Top (k N.m)	Md-Top (k N.m)	V1a-Bot (k N)	V1d-Bot (k N)	V1a-Top (k N)	V1d-Top (k N)	2x2(2x2(
	525	10	10W1	5250	250	0.00	~	-1509.9	10738.2	-592.7	8630.2	305.7	-1438.1	305.7	-1362.3	2x20
	525	9	9W1	5250	250	0.00	~	-1700.6	12846.3	-2174.5	10738.2	-158	-1514	-158	-1438.1	2x20
	525	8	8W1	5250	250	0.00	~	-1186.9	14954.4	-2397.7	12846.3	-403.6	-1589.9	-403.6	-1514	2x20
	25	7	7W1	5250	250	0.00	~	0.6	17062.5	-1923.9	14954.4	-641.5	-1665.8	-641.5	-1589.9	2x20
	25	6	6W1	5250	250	0.00	~	1800.1	19170.6	-762.2	17062.5	-854.1	-1741.6	-854.1	-1665.8	2x20
	25	5	5W1	5250	250	0.00	~	4197.6	20488.1	1035.3	19170.6	-1054.1	-1817.5	-1054.1	-1741.6	2x20
	25	4	4W1	5250	250	0.00		7202.1	20488.1	3465.9	20488.1	-1245.4	-1868.1	-1245.4	-1868.1	2x20
	25	3	SW1	5250	250	0.00	V	108/1.2	20488.1	10355.0	20488.1	-1440.6	-2160.9	-1990,6	-2160.9	2x20
	25	1	1W1	5250	250	0.00	V	20488 1	20488 1	15039	20488.1	-1816.4	-2724 5	-1816 4	-2753.4	2x20
	25			5250	200	0.00		2010011	20 10011	10000	20 10011	1010.1	ETE II J	1010.1	Er E IIG	2x20
	25															2x20
	25															2x20

陊 PROTA SOFTWARE

Obwiednia Projektowa Momentów Zginających

Na podstawie wykresu momentów zginających uzyskanych z analizy można wygenerować liniową obwiednię projektową.

Zgodnie z Eurokodem 8 – punkt 5.4.2.4 (5), wykres ten musi zostać przesunięty w górę o odległość *a*₁, określaną jako przesunięcie strefy rozciągania. Przesunięcie to jest zgodne z przyjętym kątem nachylenia przekątnych weryfikacyjnych stosowanych w analizie stanu granicznego nośności (SGN) dla ścinania.

To przesunięcie ma na celu uwzględnienie rzeczywistego rozmieszczenia naprężeń w przekroju i zwiększenie bezpieczeństwa konstrukcji poprzez bardziej realistyczne odwzorowanie rozkładu momentów w strefach plastycznych ścian nośnych.

Kąt nachylenia cięgna (θ) definiowany przez użytkownika dla długości przesunięcia strefy rozciągania

Domyślny kąt nachylenia cięgna (θ) dla obliczania przesunięcia strefy rozciągania w ProtaStructure wynosi 21,8°, co daje cot(θ) = 2,5.

Długość przesunięcia strefy rozciągania (tension shift) obliczana jest według wzoru:

 $a_1 = L_w \cot(\theta)$.

Gdzie:

- $a_1 dlugość przesunięcia,$
- Lw długość ściany,
- ϑ kąt nachylenia cięgna.

Wartość kąta ϑ może się wahać od 21,8° do 45°, w zależności od przyjętej interpretacji konstrukcyjnej. Aby umożliwić inżynierom dostosowanie tego parametru do specyfiki projektu lub lokalnych wytycznych, w ProtaStructure 2026 wprowadzono nowe ustawienie: Ustawienia > Słupy i Ściany Nośne > Projektowanie

Jeśli użytkownik nie wprowadzi własnej wartości (pozostawi zero), program zastosuje wartość domyślną $\cot(\theta) = 2,5$, odpowiadającą kątowi 21,8°.

Wprowadzenie własnego kąta nadpisuje wartość domyślną, dając większą kontrolę nad precyzją projektową.

To ustawienie pozwala elastycznie dostosować projekt obwiedni momentów i sił tnących dla ścian zgodnie z Eurokodem 8 oraz praktyką inżynierską.

ProtaStructure Environment	Column Min. Steel Ratio: 0.	.0 Wall Min. Longitudinal Steel Ratio: 0.0
ProtaDetails Environment	Column Limit Steel Ratio: 0.	.0 Wall Limit Longitudinal Steel Ratio: 0.0
	(0=Use code settings)	Wall Min. Lateral Web Steel Ratio: 0.0
Unit and Format		(0=Use code settings)
Codes	Moment Capacity Tolerance 0.	.0 Strut Indination Angle Theta for Design 0 °
Column & Shearwall	The calculated moment capacity is adjusted by this setting. A negative value decreases moment capacity and so introduces	This value overrides the calculated Strut Indination Angle. When left zero, the Tension Shift Length is calculated using a default Cot(Theta) = 2.5.
Rebars Detailing	reinforcement and a decreased safety)	
0 Beam		

Obwiednia Projektowa Sił Tnących

Zgodnie z Eurokodem 8 – punkt 5.4.2.4 (6), należy uwzględnić możliwy wzrost sił tnących po uplastycznieniu podstawy głównej ściany sejsmicznej. Wymóg ten można spełnić, zwiększając siły tnące użyte do projektowania o 50% (dla klasy ciągliwości średniej – DCM) w krytycznej wysokości ściany, rozciągającej się na 1/3 wysokości ściany (Hw/3) od podstawy budynku lub poziomu piwnicy.

Dla konstrukcji klasy ciągliwości wysokiej (DCH), współczynnik sił tnących obliczany jest zgodnie z równaniem 5.25 Eurokodu 8.

Współczynnik amplifikacji sił tnących (ɛ) zdefiniowany przez użytkownika

ProtaStructure udostępnia użytkownikowi możliwość zdefiniowania współczynnika amplifikacji sił tnących, który można edytować dla każdej linii ściany. Wartość domyślna i minimalna wynosi 1,5, natomiast maksymalna wartość to współczynnik "q" stosowany w analizie w kierunku ściany. ProtaStructure powiększa siły tnące z analizy o ten współczynnik w obrębie krytycznej wysokości.

🜔 PROTA SOFTWARE

Wykres sił tnących jest liniowo połączony z wartością na szczycie, która wynosi V_wall,base/2.

all Desig	n womer	it envelope	:5										
olumn Lin	e:								Loa	d Case:			
A - 2 (1W	1) 🗸	₽		Shear	Magnifica	tion Factor	(ε) 1.5		8	Ex+(Equ	iv. Static S	eismic X (E	+)) ~
Storey	Wall	b1 (mm)	b2 (mm)	Wall Angle	Critical Wall	Ma-Bot (k N.m)	Md-Bot (k N.m)	Ma-Top (k N.m)	Md-Top (k N.m)	V1a-Bot (k N)	V 1d-Bot (k N)	V1a-Top (k N)	V 1d-Top (k N)
8	8W1	5250	250	0.00		-380.4	9237.5	-485.5	7428.6	-35	-1042.1	-35	-927.8
7	7W1	5250	250	0.00		99.8	11046.5	-953.9	9237.5	-351.2	-1156.5	-351.2	-1042.
6	6W1	5250	250	0.00		1171.5	12855.4	-477.1	11046.5	-549.5	-1270.8	-549.5	-1156.
5	5W1	5250	250	0.00		2788.2	13986	590.1	12855.4	-732.7	-1385.2	-732.7	-1270.
4	4W1	5250	250	0.00		4897.3	13986	2229.4	13986	-889.3	-1499.5	-889.3	-1385.3
3	3W1	5250	250	0.00		7471.5	13986	4396.2	13986	-1025.1	-1537.7	-1025.1	-1537.3
2	2W1	5250	250	0.00	~	10514	13986	7074.2	13986	-1146.6	-1719.9	-1146.6	-1719.
1	1W1	5250	250	0.00	~	13986	13986	10274.8	13986	-1237.1	-1855.6	-1237.1	-1855.6

Modalna analiza pionowego trzęsienia ziemi

Ta funkcja była częścią ProtaStructure 2025. Została tutaj podsumowana ze względu na kontekst i kompletność. Przybliżone podejście statyczne nie ma zastosowania w Eurokodzie, dlatego modalna analiza pionowego trzęsienia ziemi została zaimplementowana w ProtaStructure 2025 jako nowa funkcja. Można pominąć ten rozdział, jeśli funkcja ta jest już znana.

ProtaStructure może uwzględniać wpływ pionowego działania trzęsienia ziemi w projektowaniu za pomocą dwóch metod:

- 1. Przybliżone podejście statyczne
- 2. Metoda analizy spektrum modalnego

陊 PROTA SOFTWARE

Przybliżone podejście statyczne

W podejściu statycznym wynik z przypadku obciążenia grawitacyjnego jest mnożony przez ułamek poziomego przyspieszenia spektralnego, na przykład 0.2SDS. W tym podejściu nie są uwzględniane pionowe mody drgań ani dedykowane spektrum pionowe.

Jednak statyczne obliczenie działania pionowego trzęsienia ziemi może być niewystarczające (lub niedozwolone przez normę) dla budynków z słupami transferowymi, belkami lub stropami o dużych rozpiętościach, długimi wspornikami lub pochylonymi słupami.

Niektóre normy sejsmiczne wymagają zastosowania modalnej analizy pionowego trzęsienia ziemi w takich przypadkach. Na przykład Eurokod dopuszcza wyłącznie zastosowanie modalnej analizy pionowego trzęsienia ziemi.

Metoda analizy spektrum modalnego

W metodzie analizy spektrum modalnego uwzględnia się pionowe mody drgań konstrukcji wraz z pionowym spektrum przyspieszeń. Dzięki ProtaStructure 2025 możliwe jest teraz przeprowadzenie modalnej analizy pionowego trzęsienia ziemi.

Konfigurowalne pionowe spektrum Eurokodu

Chociaż funkcja ta została pierwotnie wprowadzona w ProtaStructure 2025, znacznie ulepszyliśmy elastyczne i projektowe spektrum pionowego trzęsienia ziemi zgodnie z Eurokodem 8. Można teraz wyświetlać jednocześnie spektrum elastyczne i projektowe w kierunku pionowym oraz dostosowywać parametry takie jak współczynniki zachowania w kierunku pionowym (q-pionowe), avg/ag, S, TB, TC i TD niezależnie od spektrum poziomego. Umożliwia to dostosowanie projektu do wymagań krajowych.

2,0

0,6

Параметрите a_{vg}/a_{gr} , *S*, *T*_B, *T*_C и *T*_D, определящи приетата форма на еластичния спектър на реагиране за вертикалната компонента на сеизмичното въздействие, са дадени в таблица NA.3.4 за спектри вид 1 и в таблица NA.3.4-1 за спектри вид 3:

Таблица NA.3.4 - Приети стойности на параметрите, описващи еластичен спектър на реагиране за вертикалната компонента на спектър вид 1

Спектър	a_{vg} / a_g	7 _B (s)	7 _C (s)	$T_{\rm D}$ (s)
Вид 1	0,85	0,1	0,4	2,0

 Таблица NA.3.4-1 - Приети стойности на параметрите, описващи еластичен спектър на реагиране за вертикалната компонента на спектър вид 3 (Вранча) туре 3 (Vrancea)

 Спектър дид / д / д д / д д / д д / д д / д д / д / д д / д д /

0,2

0,85

Вид 3

Kontrole współpracy ścian i ram w układzie dualnym według Eurokodu 8

Jeśli Twój system konstrukcyjny jest sklasyfikowany jako system ścianowy, system ramowy, system dualny, równoważny system ramowy lub równoważny system ścianowy, zgodnie z EN1998-1:2004 punkt 5.1.2, możesz teraz ocenić całkowity udział sił tnących ram i ścian w swoim projekcie. Umożliwia to dokonanie niezbędnych korekt i optymalizacji zgodnie z konkretnym typem systemu konstrukcyjnego. Podsumowanie można zobaczyć w raporcie kontroli po analizie.

Member	Angle	Ey+ (Equiv. Static Seismic Y (E+))			Ey- (Equiv. Static Seismic Y (E-))		
		V2 (kN)	V3 (kN)	V _{proj} (kN)	V2 (kN)	V ₃ (kN)	V _{proj} (kN)
1C1	0.00	6.25	-11.24	11.24	1.61	-11.54	11.54
102	0.00	6.25	-12.50	12.50	1.61	-11.85	11.85
1C3	0.00	4.86	-13.14	13.14	1.25	-11.70	11.70
1C5	0.00	-6.49	-12.50	12.50	-1.66	-11.86	11.86
1C6	0.00	-4.87	-13.14	13.14	-1.25	-11.69	11.69
107	0.00	-0.62	-34.78	34.78	-0.17	-39.14	39.14
1C8	0.00	0.59	-30.78	30.78	0.15	-34.64	34.64
1C9	0.00	0.63	-35.08	35.08	0.16	-36.03	36.03
1C10	0.00	0.84	-39.17	39.17	0.21	-37.17	37.17
1C11	0.00	-0.65	-36.53	36.53	-0.17	-37.52	37.52
1C12	0.00	-0.86	-39.18	39.18	-0.22	-37.18	37.18
1C13	0.00	4.87	-9.99	9.99	1.25	-11.24	11.24
1C14	0.00	-1.48	-29.05	29.05	-0.36	-32.69	32.69
1C15	0.00	-3.38	-12.78	12.78	-0.84	-13.12	13.12
1C16	0.00	-4.86	-11.33	11.33	-1.24	-11.64	11.64
Total:	(Columns)			341.17		1	349.02
1W3	0.00	49.84	-37.16	37.16	12.89	-33.23	(P) 33.23
1W4	0.00	-50.95	-37.15	37.15	-13.21	-33.23	(P) 33.23
Total:	(Shearwalls)		6	74.31			66.46
Total Base Shear:				415.48			415.48

Base Shear Ratio of Columns: Ev+: 341 17 / 415 48 = 0.840

Ey+: 341.17 / 415.48 = 0.840 Ey-: 349.02 / 415.48 = 0.840

Base Shear Ratio of Walls. Ey+: 74.31 / 415.48 = 0.160

Ey+: 74.31 / 415.48 = 0.160 Ey-: 66.46 / 415.48 = 0.160

Ey-. 00.40 / 415.40 - 0.1

Kontrole ugięć długoterminowych według Eurokodu 2, uwzględniające pełzanie i skurcz

W ProtaStructure 2026 możesz uwzględnić pełzanie i skurcz w obliczeniach ugięć, definiując właściwości materiałów zależne od czasu zgodnie z EN1992-1-1:2004 oraz CEB FIB 90. Wymagania dotyczące użytkowalności są automatycznie sprawdzane na podstawie uzyskanych ugięć długoterminowych zgodnie z EC2.

Uwaga:

Szczegółowe kontrole ugięć zgodnie z ACI318, IS456, NSR10-C, NSCP, NTE060 oraz SNI2847 zostały już wprowadzone w poprzednich wersjach ProtaStructure. ProtaStructure 2026 obsługuje teraz szczegółowe kontrole ugięć konstrukcji żelbetowych, uwzględniające długoterminowe efekty pełzania i skurczu.

Mimo że opracowano wysoce parametryczne nowe modele, przewidywanie pełzania w konstrukcjach żelbetowych nadal pozostaje obarczone niepewnością. Złożoność ta wynika z samego materiału oraz problemu oceny odkształceń zależnych od czasu i utraty sił sprężających, które zazwyczaj nie są uwzględniane w analizie konstrukcji. Do pewnego stopnia można zredukować tę niepewność i złożoność w prognozowaniu pełzania, stosując procedury normowe, które dają ogólne wytyczne.

Aby określić parametry betonu zależne od czasu w ProtaStructure:

- 1. Otwórz okno właściwości materiału betonu.
- 2. Kliknij przycisk "Właściwości zależne od czasu…".
- 3. Zaznacz opcje "Uwzględnienie zależności od czasu", które chcesz uwzględnić w kontrolach ugięć. Jeśli chcesz częściowo uwzględnić wpływ tych parametrów, możesz wprowadzić wartości od 0 do 1. Wprowadzenie "O" lub odznaczenie danej opcji dezaktywuje ten parametr.
- 4. Wybierz "Model czasowy", którego chcesz użyć. Dostępne opcje to CEB FIB 90 oraz EN1992-1-1:2004.
- 5. Określ pozostałe parametry, takie jak rodzaj cementu, wilgotność względna, początek skurczu oraz rodzaj kruszywa.

Ważne:

Parametry betonu zależne od czasu będą dostępne tylko wtedy, gdy wybrany jest Eurokod 2 jako norma projektowa. Parametry te nie są stosowane w kontrolach ugięć zgodnie z innymi normami projektowymi. ACI318, IS456, NSR10-C, NSCP oraz SNI2847 uwzględniają ugięcia długoterminowe za pomocą alternatywnych formuł.

Modele czasowe będą automatycznie uwzględniane w kontrolach ugięć według Eurokodu (nie w analizie budynku), gdy przypiszesz zmodyfikowany materiał betonowy do elementów konstrukcyjnych.

Eurokod 3: Projektowanie belek ażurowych

Opracowaliśmy projektowanie belek ażurowych zgodne z Eurokodem 3, uzupełnione szczegółowym raportem projektowym krok po kroku. Projektowanie belek ażurowych zostało wprowadzone w poprzedniej wersji ProtaStructure 2025. Wsparcie dla Eurokodu jest nowością w ProtaStructure 2026.

🜔 PROTA SOFTWARE

Sprawdzenie szerokości rys

Oprócz kontroli ugięć długoterminowych, kontrole szerokości rys mogą być również przeprowadzane zgodnie z wytycznymi Eurokodu 2, ACI318, IS456, NSR10-C, NSCP, NTE060 oraz SNI2847.

ACI-318 [2019]	Building code R	equirements for Structural Concre	te (2019)
1 - Storey: 1 Flexural Member Type Span Type Clear Span / Height	. Beam . Exterior Span . 4400 / 500 mm = 9 ≤ 18.63 (ACI318-19 Table 9.3.1.1)	
Section Dimensions: Flange Dimensions: Uncracked Section: Concrete: Steel:	250 / 500 mm b = 617 mm l _c = 3.832E-03 m ⁴ f _c ' = 30.00 N/mm ² f _y = 415.00 N/mm ²	$\begin{array}{l} d = 442 \mbox{ mm} \\ h_{1} = 120 \mbox{ mm} \\ y(b) = 299 \mbox{ mm} \\ f_{r} = 5.10 \mbox{ N/mm}^{2} \\ E_{e} = 200000.0 \mbox{ N/mm}^{2} \end{array}$	d' = 58 mm y(t) = 201 mm E _c = 25743.0 N/mm ² E _v /E _c = 8
	Left Support	Right Support	Span
A _i (t)/A ₆ (b) M _(g) / M _(g+q) M ₂ Cracking Status (G) Cracking Status (G+Q) Cracked Inertia (G) Cracked Inertia (G+Q) Effective Inertia (G+Q)	402 / 402 mm ² -19.6 / -20.9 kN.m 97.5 kN.m NO NO - - 3.832E-03 m ⁴ 3.832E-03 m ⁴	402 / 402 mm² -24 0 / -256 kN m 97.5 kN m NO NO 3.832E-03 mf 3.832E-03 mf	402 / 402 mm ² 14.7 / 15.7 kM m 65.3 kM m NO NO 3.832E-03 m ⁴ 3.832E-03 m ⁴
Effective Inertia (G)		3.794E-03 m	-
Effective Inertia (G+Q)		3.794E-03 m 3.5704E-04	4
Immediate Def. (G+Q)		m 3.8163E-04 m	
Immediate Def. (Q)		2.4589E-05	
Loading Time		FIVE YEARS or MORE 9.8578E-04	
Flexural Member and Positic	n: Storey/Roof Member Supportin Total Deflection = 0.986 mm ≤	ng Partition (Sensitive Load) 9.167 mm (4400/480) Adequate	- -
Serviceability Limit State C	ombination Results	Right Support	Snan
D+L M	-20.9 k	N.m -25.6 kN.m	15.7 kN.m
Me Cracking Status	97.5 kl	N.m 97.5 kN.m NO	65.3 kN.m NO
1 2000000 1000000	Crack Wid	th Check (Span):	
Effective Inertia	0.10	Exposure Class	1
Effective Inertia Effective Inertia Immediate Def.	G+Q		t M
Effective Inertia Effective Inertia Immediate Def. Total Time Dep. Deflec	tion (Critical	Service Momen	L, IVI
Cracked Inertia Effective Inertia Immediate Def. Total Time Dep. Defler Crack Width Check (Span)	(Critical Combination	on) Neutral Axis De	pth, x
Cracked unersia Effective Inertia Effective Inertia Immediate Def. Total Time Dep. Defler Crack Width Check (Span) G + Q Exposure C (Critical Service Mor	tion (Critical (Critical combination	Service Momen on) Neutral Axis De Reinforcing Ste	pth,x el Stress,f₅ = M / ((d
Cracked metria Effective Inertia Immediate Def. Total Time Dep. Deflet Crack Width Check (Span) G + Q Exposure C(Critical Service Mor Combination) Neutral Axis Reinforcino	ton ass hent, M Depth, x Steel Stress	Service Momen on) Neutral Axis De Reinforcing Ste β = (h - x) / (d -	pth, x el Stress, f _s = M / ((d x)

Norma IS: Kontrola przeniesienia obciążeń ze słupa na fundament

Dodano nową kontrolę zgodnie z IS456 pkt 34.4, która sprawdza przeniesienie obciążenia ze strefy obciążonego słupa na fundament.

IS 456 - 34 4	
Compressive load transferred from column to footing, Pu	= 132.04 kN
A2 (Column Area)	= 0.1250 m2
A1 (Calculated using 1:2 slope)	= 3.8850 m2
Footing Base Area	= 1.4300 m2
->A1	= 1,4300 m2
Modification Factor, (A1 / A2)05≤ 2	= 2
Concrete Bearing Capacity	= 0.45Fck(Modification Factor)A2 = 3375.00 kN
Check: Concrete Bearing Capacity ≥ Pu	Status: V

Projektowanie belek wiążących fundament według ACI318

Belki wiążące fundament można zdefiniować w ProtaStructure, aby zapewnić poziome połączenie między dwoma słupami na poziomie fundamentów, zapobiegając przesunięciom bocznym i względnym przemieszczeniom, szczególnie w przypadku fundamentów punktowych. Aby wstawić belki wiążące fundament, można użyć polecenia Modelowanie > Belka żelbetowa > Belka wiążąca. Po ich wstawieniu projekt będzie wykonywany z uwzględnieniem sił osiowych działających na słupy lub ściany, do których są podłączone. Obecnie projektowanie jest możliwe zgodnie z normami amerykańskimi i tureckimi.

🜔 PROTA SOFTWARE

Ulepszone projektowanie stóp fundamentowych

W najnowszej wersji ProtaStructure możesz korzystać z ulepszeń i nowych funkcji w projektowaniu fundamentów punktowych, takich jak wskaźnik wykorzystania nośności, kontrola długości BOB, globalne i zbiorcze ustawienia zapobiegające obrotowi oraz możliwość ograniczenia maksymalnej głębokości fundamentu.

arch Settings	Design			-Steel Bar Sele	-ction	
~	De	fault Pad Footing Form:	Rectangular 🗸		Custom Pad Base Min. Steel Rativ	o: 0.2
Project Preferences		Min, Footing Width:	50.0 cm		Strip Footing Min. Steel Rati	o: 0.2
nit and Format		Min. Pad Base Depth:	35.0 cm		Raft Foundation Min. Steel Rati	0.2
		_	[Piled Raft Foundation Min. Steel Ratir	0.2
National Design Parameters		Size Increment Step	10 cm			
Exact Loading		Size Indenencistep.	10 011			-
🕅 Lateral Drift & Bracing		Depth Increment Step:	10 cm		User Defined Rebar Min. Spacin	ig 10 c
Column & Shearwall	Pad B	ases - Concrete Cover:	0.0 cm		Max. Steel Bar Spacin	ig: 25 c
Ø Beam	Concrete Cov	er will be calculated acco provisions if "0" is e	ording to the code ntered in this field		Bar Spacing Ste	ep: 5 c
Slab						
by Foundation		Rotation Prevented Alo	ng X Direction 🔽	Foo	ting Reinforcement (Bottom Bars): Wi	th Bobs
Design		Rotation Prevented Alo	ng Y Direction 🔽		Footing Reinforcement (Top Bars): Wi	thout Bobs
Pile Caps	Anchusia Course					2/
Pile	Analysis Source		Contract the dat		Min. Steel Bar Size: 01	2
Stairs	FE Floor Model		Analysis Model		Distribution Bar Size: Ø1	2
A Steel Settings	Min. Moment Coefficie	ents				Use Top Bars
Composite Member Settings		Span: 1/	16	Min	imum Foundation Depth to Use Side Ba	rs 40.0 c
Analytical Model Settings		Supports 1/	12			
n̂- Load Editor Settings		Support: 1/	12			
H Assessment Settings	3			0		
Scales						
Rebar						
Plan Details						
Template Management	9					

Design							Pad Footing Ba	tch Design					1 -	×
Design All	Check Design(Do not redesign) Check Design(Redesign if fails) Redesign All Design	Design Selected	Group Selected Group	Ungroup Ding	Select \ Clear All Selec	Reverse Selection Settings	Apply Design Combinations titions Import	Export Export To Excel Report Exp	To Detailed OK the Design Report	Cancel				
Label	Columns	Load Con	binations	D	epth	Lx	Ly	Rotation Prevented (X)	Rotation Prevented (Y)	Base	Тор	Side	Design	
▶ F-1C4	1C4	1,2,3,4,5,6	,7,8,9,10,	4	0.0	300.0	200.0			ø12-20 ø12-20	-	1ø12-20 1ø12-20	×	
F-1C7	107	1,2,3,4,5,6	7,8,9,10,	3	5.0	70.0	70.0	\checkmark	V	1x4ø12-20 1x4ø12-20	3ø12-25 3ø12-25	0	~	

🜔 PROTA SOFTWARE

Minimalna głębokość stopy do zastosowania prętów bocznych

Dodano nową opcję umieszczania prętów bocznych w stopach i oczepach pali. Opcja ta działa podobnie do "Użyj prętów górnych"; jeśli fundament ma większą głębokość niż określona wartość, pręty boczne zostaną automatycznie uwzględnione, w przeciwnym razie – nie. Wartość domyślna została ustawiona na 400 mm. Ustawienie to można znaleźć w menu: Ustawienia > Fundamenty > Projektowanie.

陊 PROTA SOFTWARE

Maksymalna głębokość stopy fundamentowej

ProtaStructure 2026 wprowadza istotne ulepszenie w projektowaniu fundamentów punktowych dzięki nowemu parametrowi "Maksymalna głębokość podstawy fundamentu". Funkcja ta pozwala użytkownikom na określenie górnej granicy dopuszczalnej głębokości fundamentu podczas obliczeń projektowych, co daje większą kontrolę nad specyfikacjami konstrukcyjnymi. Jeśli projekt wymaga głębokości fundamentu przekraczającej tę zdefiniowaną wartość, system automatycznie oznaczy projekt jako nieważny. Zapewnia to zgodność z narzuconymi ograniczeniami i sprzyja bardziej precyzyjnym oraz efektywnym procesom projektowym.

Proszę pamiętać, że nieprawidłowe ustawienie maksymalnej głębokości może prowadzić do niepotrzebnych błędów projektowych, powodując frustrację lub konieczność wprowadzenia korekt. Ponadto, uwzględnienie szerokiego zakresu warunków projektowych może być wymagające, aby parametr pozostał istotny i skuteczny. W niektórych przypadkach narzucenie maksymalnej głębokości może ograniczać elastyczność projektu, co potencjalnie prowadzi do mniej ekonomicznych rozwiązań. Parametr głębokości fundamentu ma bezpośredni wpływ na nośność, na zginanie jednostronne, odporność na przebicie, nośność na moment oraz zbrojenie w fundamencie.

To ustawienie można znaleźć w Opcje > Fundamenty > Projektowanie. Projekt fundamentu punktowego musi zostać zaktualizowany po zmianie tego parametru.

ProtaDetails Environment Project Preferences Unit and Format Label Codes Lateral Loading Lateral Drift & Bracing Column & Shearwall Beam Slab Foundation General Design Pile Caps Pile Stairs Pile Caps Pile Stairs Composite Member Settings Min. Moment Coefficients	Search Settings	2	Design	
Min. Footing Width: 500 mm Unit and Format Min. Pad Base Depth: 150 mm Codes Size Increment Step: 100 mm Lateral Loading Depth Increment Step: 100 mm Column & Shearwall Depth Increment Step: 100 mm Column & Shearwall Concrete Cover: 0 mm Beam Slab Concrete Cover: 0 mm Slab Concrete Cover: 0 mm Pile Caps Pile Pile Staris Retrofit Wall Steel Settings Staris Steel Settings Composite Member Settings Min. Moment Coefficients) 诊 ProtaDetails Environment	^	Default Pad Footing Form:	Rectangular 🗸
Min. Pad Base Depth: 150 mm	_	-	Min. Footing Width:	500 mm
Max. Pad Base Depth: Pad Base D	Project Preferences		Min. Pad Base Depth:	150 mm
Codes Lateral Loading Lateral Drift & Bracing Column & Shearwall Beam Beam Slab Foundation General Design Pile Stairs Pile Stairs FE Floor Model Stairs Composite Member Settings Min. Moment Coefficients	Label		Max. Pad Base Depth:	400 mm
 Lateral Loading Lateral Drift & Bracing Depth Increment Step: 100 mm Pad Bases - Concrete Cover: 0 mm Pad Bases - Concrete Cover: 0 mm Concrete Cover will be calculated according to the code provisions if "0" is entered in this field Stab Foundation General Design Pile Caps Pile Stairs Retrofit Wall Steel Settings Composite Member Settings Composite Member Settings Manalytical Model Settings 	Codes		Size Increment Step:	100 mm
Pad Bases - Concrete Cover: 0 mm Beam Concrete Cover: 0 mm Stab Concrete Cover: 0 mm Stab Concrete Cover: 0 mm Foundation Concrete Cover: 0 mm General Rotation Prevented Along X Direction Rotation Prevented Along Y Direction Design Pile Pile Stairs FE Floor Model Building Analysis Model Min. Moment Coefficients Span: 1/ 16 Support: Support: 1/	∏ Lateral Loading ∑ Lateral Drift & Bracing		Depth Increment Step:	100 mm
 Column & Shearwall Beam Slab Foundation General Design Pile Caps Pile Stairs Retrofit Wall Steel Settings Composite Member Settings Concrete Cover will be calculated according to the code provisions if "0" is entered in this field Participation Pile Caps Pile Stairs Min. Moment Coefficients Span: 1/ 16 Support: 1/ 12 			Pad Bases - Concrete Cover:	0 mm
Foundation Rotation Prevented Along X Direction General Rotation Prevented Along Y Direction Design Rotation Prevented Along Y Direction Pile Caps Pile Stairs FE Floor Model Retrofit Wall FE Floor Model Stairs Min. Moment Coefficients Composite Member Settings Span: 1/ Analytical Model Settings Support: 1/	 ↓ Column & Shearwall ↓ Ø Beam ↓ ¬ Slab 		Concrete Cover will be calculated accor provisions if "0" is er	ording to the code intered in this field
Design Rotation Prevented Along Y Direction Pile Caps Pile Pile FE Floor Model FE Floor Model Building Analysis Model FE Floor Model Building Analysis Model FE Floor Model Stairs Composite Member Settings Span: 1/ Min. Moment Coefficients Span: 1/ Support: 1/ 12	General		Rotation Prevented Alor	ng X Direction
Pile Caps Pile Stairs Image: Retrofit Wall Steel Settings Image: Composite Member Settings	Design		Rotation Prevented Alor	ng Y Direction
Stairs O FE Floor Model Building Analysis Model Image: Retrofit Wall Image: Min. Moment Coefficients Image: Span: 1/ 16 Image: Span: 1/ 16 Image: Span: 1/ 12	Pile Caps Pile		Analysis Source	
Image: Retrofit Wall Image: Steel Settings	Stairs		FE Floor Model Building A	Analysis Model
Gomposite Member Settings Span: 1/ 16 Analytical Model Settings Support: 1/ 12	Retrofit Wall		Min. Moment Coefficients	
Analytical Model Settings	Composite Member Settings		Span: 1/	16
	Analytical Model Settings		Support: 1/	12

Strona - 35

Ulepszenia analizy

陊 PROTA SOFTWARE

Kontrole przebicia za pomocą MES

ProtaStructure 2026 wprowadza rozszerzone wsparcie dla kontroli odporności na przebicie płyt płaskich i fundamentów płytowych zgodnie zarówno z amerykańską normą ACI318, jak i indyjską normą IS456 (oraz innymi podobnymi normami, takimi jak NSR10, NTE030, Republika Dominikany, Indonezja, Filipiny i Tajlandia – wsparcie dla Eurokodów jest w trakcie realizacji). Najnowsza wersja potrafi automatycznie obliczać siły tnące prostopadłe do płaszczyzny, V13 i V23, wokół obwodu przebicia oraz uwzględniać je w analizie odporności na przebicie.

Uwzględnienie obwiedni słupów

Aby zwiększyć dokładność kontroli odporności na przebicie przy użyciu wyników MES, obrysy słupów będą zawsze wykluczane z siatki elementów skończonych dla płyt płaskich i fundamentów płytowych, jeśli do danego słupa nie są podłączone żadne belki lub słup nie jest połączony ze ścianą.

Ważne

Obwiednie słupów będą zawsze wykluczane z siatki elementów skończonych, jeśli do słupa nie są podłączone belki ani ściany. Zwiększy to dokładność kontroli odporności na przebicie dla płyt płaskich i fundamentów płytowych. Istniejące ustawienie "Uwzględnij obwiednię słupów" jest ważne tylko dla słupów z połączonymi belkami.

Obwiednie słupów nie są uwzględniane w siatce elementów skończonych dla słupów z obniżeniami ani dla słupów znajdujących się wewnątrz lub na narożnikach ścian usztywniających.
Metodologia

Maksymalna wartość naprężenia ścinającego jest uzyskiwana poprzez zbieranie wyników z obwodu przebicia, który może mieć kształt prostokątny, kołowy lub nieregularny, w zależności od geometrii słupa i płyty. Wyniki są zbierane dla każdej kombinacji, a do analizy przyjmowana jest wartość obwiedniowa.

V23 shear contours and punching station points for envelope combinations in analysis post-processor.

Column drop panels, punching perimeters and shear contours shown simultaneously on physical floor plan

Metodologia i formuły różnią się w zależności od normy projektowej, ale zasadniczo, jeśli wytrzymałość na rozciąganie betonu jest wystarczająca do przeciwstawienia się naprężeniom przebicia wokół obwodu przebicia, to nie jest obliczane dodatkowe zbrojenie. Jednak, gdy naprężenia przebicia przekraczają wytrzymałość betonu na rozciąganie, ProtaStructure oblicza dodatkowe zbrojenie.

Istniejące zbrojenie płyty oraz dodatkowe zbrojenie miejscowe (jeśli występuje) będą uwzględniane jako zbrojenie przeciw przebiciu.

Joiumn Punc	hing Perime	er Options					
			Check Colu	ımn Perimeter			
Columns							
Circular Columns	0	0	Include Los	ad Within Punching I	Perimeter		ſ
	Column/V	Vall	Existing Reinford	ement - 1	Existing Reinford	ement - 2	Perimeter Reducti.
Label		Insertion	Diam / Spacing (cm)	Patch Steel	Diam / Spacing (cm)	Patch Steel	1st Perimete (cn
S1		Interior Column	(X1) ø10 / 12	ø14/10	ø8 / 20		
S2		Interior Column	(X1) ø10 / 12	ø14/11	ø8 / 20		
		Interior Column	(X2) ø8 / 10	ø10 / 12	ø8 / 20		
S3							

Consecutive punching perimeters, V13 contours, column drops, patch regions, patch reinforcement and slab base reinforcement shown on the plan at the same time.

		Prota Software
	Column Punching Check Rev: 1	Calc. By: Checked By:
Column: S4 (Storey:	1)	
FE Slab Shear Results Slab: h = 18.0 cm, d = Punching Region: Perir 1. Direction Punching C Direction Punching C Parameters: $\beta_c = 0.6$, h Stress Check (V _{nom} = 2	$\begin{array}{l} \forall 13 = 19.827 \ \text{t/m}, \ \forall 23 = 28.696 \ \text{t/m}, \ \textbf{V}_{nom} = 2\\ 16.1 \ \text{cm} \ (\text{Concrete Fck} = 2500.00 \ \text{t/m}^2)\\ \text{inter} \ (b_0) = 224.4 \ \text{cm}, \ \text{Area} \ (A) = 3047.21 \ \text{cm}^2,\\ \text{theck:} \ \forall 13 = 19.827 \ \text{t/m}, \ a_1 = 66.1 \ \text{cm}, \ \tau_r = \forall 13\\ \text{theck:} \ \forall 23 = 28.696 \ \text{t/m}, \ a_2 = 46.1 \ \text{cm}, \ \tau_r = \forall 23\\ \text{ts} = 10, \ \tau_c = 0.25 \ (\text{Fck})^{112} = 125.000 \ \text{t/m}2\\ 8.696 \ \text{t/m}, \ \tau_r = 178.236 \le k_{sTc} = 125.000 \ \text{t/m}2\\ \end{array}$	3.696 t/m, Critical Combination: , (14) Gc+Qc+Ez-Ey+ Area (b₀*d) = 3612.84 cm ² i/ b₀d = 123.149 t/m2 i/ b₀d = 178.236 t/m2 Adequate ✔
Punching Check: 1. Perir FE Slab Shear Results Slab: h = 18.0 cm, d = Punching Region: Perir 1. Direction Punching (2. Direction Punching (Parameters: $\beta_c = 0.6$, 1 Stress Check: (Vnom 2 Shear Reinforcement F	neter - At d Distance (18 456:2000 - CI 31.6. ² ∨13 = 25.693 t/m, V23 = 26.136 t/m, V _{nom} = 2 16.1 cm (Concrete Fck = 2500.00 t/m ²) neter (b ₀) = 288.8 cm, Area (A) = 5112.84 cm ² , heck: V13 = 25.693 t/m, a ₁ = 82.2 cm, τ _v = V13 vheck: V23 = 26.136 t/m, a ₂ = 62.2 cm, τ _v = V13 vheck: V23 = 26.136 t/m, a ₂ = 62.2 cm, τ _v = V13 vheck: V23 = 25.693 t/m, a ₁ = 12.5 000 t/m2 ≤ tequired! A _{sv} = 12.71 cm ²) 6.136 t/m, Critical Combination:, (0) G+Q Area (b₀*d) = 4649.68 cm² / b₀d = 159.584 t/m2 / b₀d = 162.333 t/m2 1.5 τ₅ = 187.500 t/m2
Punching Check: 2. Perin FE Slab Shear Results Slab: h = 18.0 cm, d = Punching Region: Perin	neter - At 1.5d Distance (IS 456:2000 - Cl. 31 V13 = 27.114 t/m, V23 = 21.753 t/m, Vnom = 2 16.1 cm (Concrete Fck = 2500.00 t/m ²) neter (k.) = 353 2 cm. Area (A) = 7696 89 cm ² .	6.2) 7.114 t/m, Critical Combination: , (0) G+Q Area (h.*d) = 5686.52 cm²

Punching shear check report for consecutive punching perimeters.

Edytowalna mimośrodowość przypadkowa i współczynnik bezpieczeństwa przed wywróceniem

Aby zachować równowagę między automatyzacją a kontrolą, ProtaStructure 2026 umożliwia teraz użytkownikom definiowanie własnych wartości mimośrodowości przypadkowej oraz współczynników bezpieczeństwa przed wywróceniem w przypadku działania sejsmicznego. To ulepszenie daje projektantom większą precyzję i elastyczność w dostosowywaniu projektu. Ustawienia te można znaleźć w: Parametry sejsmiczne > Analiza oraz Parametry sejsmiczne > Ustawienia.

arameters Analysis Structural Irregularities Settings	Check Wall-Frame Interaction
Load Application and Analysis	Check Second Order Effects
	Check Strength Irregularity (Weak Storey)
Apply Accidental Eccentricity	Check Stiffness Irregularity (Soft Storey)
Accidental Eccentricity: 5.00%	
	Post Analysis Design Checks
Damping Ratio: 0.05	Check Strong Column - Weak Beam
Number of Horizontal Modes: 20	✓ Perform Joint Shear Check
Number of Vertical Modes: 6	Check Minimum Member Dimensions
	Check Building Overturning
Use user-defined periods in equivalent static analysis	Overturning safety factor (Seismic): 2.0
Period in X direction, Tx: 0.0	Overturning safety factor (Nonseismic): 2.0
Period in Y direction, Ty: 0.0	Include Basements in overturning check
Structural Usage or Type:	Response Spectrum Analysis
Ordinary Buildings	
	I I Check Cumulative Effective Mass Darticipation

Wyznaczanie kondygnacji jako "pośrednie"

ProtaStructure 2026 umożliwia oznaczenie dowolnej kondygnacji jako kondygnacji "pośredniej". Kondygnacje pośrednie mogą stanowić częściowe układy między dwiema kondygnacjami, zawierać elementy konstrukcyjne lub cofnięcia wewnętrzne wykorzystywane do różnych celów. Jeśli te elementy są zdefiniowane na oddzielnej kondygnacji, ProtaStructure pozwoli oznaczyć ją jako kondygnację pośrednią, wykluczając ją z kontroli nieregularności, przy jednoczesnym uwzględnieniu pełnej sztywności, masy i obciążenia w analizie budynku.

Aby ustawić kondygnację jako pośrednią:

- 1. Otwórz Edytor Kondygnacji za pomocą polecenia Edytuj kondygnację
- 2. Znajdź w tabeli odpowiedni wiersz kondygnacji i ustaw Typ kondygnacji na pośrednią.

	Info	Stor	h (mm)	Level (mm)	Label	Description	Storey Type	D1 (mm)	D2 (mm)	Wall1 (m2)	Wall2 (m2)	Imp. Load Reduction	Live Load Participation	Structural System	Similar Storeys	Τ
t	~	1	3000	3000	1		Normal	25000	12000	0.00	0.00	0.00	0.5	RC		1
	~	2	3000	6000	2		Normal	25000	12000	0.00	0.00	0.00	0.5	RC		
ſ	~	3	3000	9000	3		Intermediate 🗸	15000	12000	0.00	0.00	0.00	0.5	RC		
	~	4	3000	12000	4		Normal	25000	12000	0.00	0.00	0.00	0.5	RC		
	~	5	3000	15000	5		Intermediate	25000	12000	0.00	0.00	0.00	0.5	RC		
	~	6	3000	18000	6		Intermediate	10000	12000	0.00	0.00	0.00	0.5	RC		
	\checkmark	7	3000	21000	7		Normal	25000	12000	0.00	0.00	0.00	0.5	RC		
	~	8	3000	24000	8		Normal	25000	12000	0.00	0.00	0.00	0.5	RC		1
	~	9	3000	27000	9		Normal	25000	12000	0.00	0.00	0.00	0.5	RC		
	1	10	2000	29000	10		Normal	5000	4000	0.00	0.00	0.00	0.5	RC		
n	posed	LoadRe	Apply		Sin	nilar Storey Define Se	lected Storeys as Simila	r		Effective No.of F	Top Storey No: ligid Basements:	9	✓ 1st Sto	rey Bottom	Level: (1
			Reset				Reset							Footing	Label: F	-
													Fo	oting Descr	iption:	
e	у Тур	e			_								6	2		

Siatkowanie płyt na tej samej kondygnacji ułożonych jedna nad drugą

W ProtaStructure 2026 możesz teraz modelować i siatkować wiele płyt ułożonych jedna nad drugą na tej samej kondygnacji do analizy metodą elementów skończonych. To ulepszenie pozwala uwzględniać bardziej złożone układy konstrukcyjne, umożliwiając siatkowanie płyt na różnych poziomach wysokości, zarówno w obrębie jednej kondygnacji, jak i na poziomie fundamentu. We wcześniejszych wersjach tylko jedna płyta na tej samej kondygnacji była uwzględniana w siatce MES, co ograniczało dokładność analizy.

Aby skorzystać z tej funkcji:

- 1. Otwórz okno Właściwości płyty.
- 2. W polu względny poziom wprowadź różnicę rzędnej płyty względem poziomu kondygnacji.
- Upewnij się, że zaznaczona jest opcja "Zastosuj Z do modelu analitycznego", aby ta różnica wysokości została uwzględniona w analizie budynku.

Zastosowanie siatki czworokątnej do płyt w analizie metodą elementów skończonych

Wprowadzamy teraz elementy powłokowe czworokątne (QUAD) w płytach. Gęstość siatki jest automatycznie dostosowywana przez ProtaStructure, uwzględniając minimalny rozmiar siatki określony przez użytkownika.

Domyślnym typem elementu powłokowego w ProtaStructure będą od teraz elementy QUAD. Jednakże algorytm generowania siatki automatycznie zastosuje elementy trójkątne, gdy wymaga tego geometria. W takim przypadku używana będzie mieszana siatka z elementów trójkątnych i czworokątnych.

Modyfikatory sztywności ścian usztywniających tylko na kondygnacjach krytycznych

W każdej kolejnej wersji usprawniamy nasze możliwości analizy i projektowania sejsmicznego, dostarczając bardziej efektywne narzędzia, które znacząco wpływają na dokładność kontroli. ProtaStructure wprowadza teraz nową opcję stosowania modyfikatorów sztywności ścian usztywniających wyłącznie na kondygnacjach krytycznych, co pozwala lepiej kontrolować symulację zachowania konstrukcji.

Aby włączyć tę funkcję, zaznacz opcję "Nie zmniejszaj sztywności ścian powyżej kondygnacji krytycznej" w oknie Analiza Budynku > Opcje Modelu > Model > Czynniki efektywnej sztywności materiałów i przekrojów.

Effective Material and Section Stiffness Factors						
	Elasticity Modulus	Axial Area		Bending Stiffness	Shear Area	Torsional Constant
Shearwalls (Shell)	1.00	1.00	In Plane	1.00	1.00	1.00
	1.00	1.00	Out of Plane	0.35	1.00	1.00
Shearwalls (Frame)	1.00	1.00	Major	0.35	1.00	1.00
	1.00	1.00	Minor	0.35	1.00	1.00
Basement Walls	1.00	1.00	In Plane	0.35	1.00	1.00
	1.00	1.00	Out of Plane	0.35	1.00	1.00
Slabs	1.00	1.00	In Plane	1.00	1.00	1.00
	1.00	1.00	Out of Plane	0.25	1.00	1.00
Columns	1.00	1.00		0.70	1.00	1.00
Beams	1.00	1.00		0.35	1.00	1.00
Coupling Beams	1.00	1.00		0.35	1.00	1.00
Vertical-Only RC Column				0.01		
Vertical-Only RC Beam				0.01		
Vertical-Only Steel Column				0.01		
Vertical-Only Steel Beam				0.01		
Vertical-Only Primary Composite Beam				0.01		
Vertical-Only Secondary Composite Beam				0.01		
You can modify the elasticity modulus, section areas, mome 0.05 to reduce the moment of inertia values by 95% to red Note: In order to apply these factors, building analysis mus	ent of inertias and t duce the lateral stiff st be repeated. The	orsional constants fnesses of the colu se factors will be a	of the member groups to b mns. Ipplicable only for load case	e used in the analys	is model. For examp section properties a	ole, you can enter are used.
Do Not Reduce the Stiffnesses of Walls Above Critical H	Heigh				🔷 ОК	X Cancel

Automatyczne przypadki obciążeń dynamicznych gruntu oraz obciążeń od nawiewu śniegu

W ProtaStructure 2026 dokonaliśmy istotnego postępu w zakresie obliczeń i kombinacji obciążeń. Choć program już wcześniej wspierał obliczanie dynamicznych obciążeń gruntu oraz obciążeń od nawiewu śniegu, użytkownicy musieli ręcznie tworzyć własne przypadki obciążeń, aby je przypisać.

W najnowszej wersji ProtaStructure wprowadza automatyczne generowanie przypadków obciążeń dynamicznych gruntu oraz obciążeń od nawiewu śniegu. Przypadki te są płynnie zintegrowane z procesem analizy i automatycznie łączone z innymi przypadkami obciążeń z użyciem odpowiednich współczynników kombinacji.

To usprawnienie upraszcza cały proces pracy oraz zapewnia większą spójność i dokładność analizy konstrukcji, minimalizując ręczne wprowadzanie danych i potencjalne błędy. Użytkownicy nadal jednak muszą ręcznie przypisać obliczone obciążenia do automatycznie utworzonych przypadków obciążeń.

Dzięki temu ulepszeniu użytkownicy mogą efektywniej zarządzać złożonymi scenariuszami obciążeniowymi, co czyni ProtaStructure jeszcze bardziej solidnym i przyjaznym narzędziem do nowoczesnego projektowania konstrukcji.

Dodatkowe przypadki obciążeń można zdefiniować za pomocą Generatora Obciążeń w ProtaStructure. Upewnij się, że zaznaczyłeś opcje "Definiuj kombinacje dla obciążeń od nawiewu śniegu (Sd1, Sd2)" oraz "Stwórz przypadki obciążeń dynamicznych gruntu".

Vertical Load Combinations	Horizontal Load Combinations	Vertical Load Combinations Horizontal Load C	ombinations	
Define Dead Load Case Define Live Load Case	e (G) App (Q)	y Seismic Loading Equivalent Static Load v Add Vertical Seismic Case Modal Spectrum Analysis Method	Create Seismic Combinations not Including Live Loads Apply 30% of Other Direction Loading	TBDY [2018] Ex+, Ex-, Ey+, Ey- Create All Possibl Results
	Automatically == ==	Apply Notional Loads to Seismic Combinat	lions	Use Cracked Sec
Direction Dependent Pa	attern Loading	Wind Loading	☑ G+Q+1.3W ☑ 0.9G+1.3W	EN1991-1-4 [2005]
Define Combinations for Define Combinations	n Keor Eric Educ (g) or Snow Load (S) 1s for Snow Drift Loads (Sd 1, Sd2)	Apply Notional Loads to Wind Combination	15	Use Cracked Sec
Define Combinations fo	or Rain Load (R)	Soil Pressure Pressure Pressure Positive	Direction 1.4G+1.6Q+1.6P (+) V 0.9G+1.6P	Px, Py
Stage Cases Create New Combination	G Q Q	Oir-Y Positive Apply Notional Loads to Soil Pressure Com	(+) V Define Separate Negativ	e Load Cases I Cases

Automatyczne ograniczenia bryłowe w obrysach słupów

Nieustannie udoskonalamy automatyczny model analityczny w ProtaStructure, aby zapewnić zgodność ze standardami branżowymi oraz dokładne odwzorowanie zachowania konstrukcji.

ProtaStructure automatycznie wycina obrysy słupów z siatki MES płyt w płytach jednopoziomowych i fundamentach płytowych. Ta sprawdzona funkcja pozwala na bardziej realistyczne i ekonomiczne projekty, eliminując nierealistyczne wartości naprężeń szczytowych powstające, gdy słup łączy się z płytą w pojedynczym punkcie.

W ProtaStructure 2026 wprowadziliśmy nową funkcję — automatyczne ograniczenia bryłowe (Automated Body Constraints). Ulepszenie to automatycznie definiuje więzy pomiędzy węzłami słupów a sąsiednimi punktami siatki płyty, precyzyjnie symulując wpływ przekroju słupa na siatkę. Ograniczenia bryłowe zapewniają, że węzły na górnej płaszczyźnie poruszają się jako ciało sztywne, oferując dokładniejszą symulację matematyczną i eliminując ograniczenia sztywności wynikające z poprzedniego podejścia opartego na sztywnych przegubach.

Dotychczas ProtaStructure stosowało sztywne przeguby do łączenia węzłów słupów z punktami siatki płyty. Mimo że metoda ta jest powszechnie stosowana w praktyce, wprowadzała dodatkową sztywność i komplikacje do układu równań, pośrednio wpływając na symulowane zachowanie i wyniki projektowe.

Uwaga:

Sztywne przeguby będą nadal stosowane tam, gdzie jest to konieczne, na przykład do łączenia elementów konstrukcyjnych o niespasowanych mimośrodach, aby zachować spójny i poprawnie zdefiniowany model analityczny. Funkcja automatycznych ograniczeń bryłowych jest stosowana wyłącznie do wyciętych obrysów słupów w płytach jednopoziomowych i fundamentach płytowych.

Ważna uwaga:

Węzły z ograniczeniami bryłowymi nie będą kolidować z więzami membrany (jeśli istnieją), które również mogą być definiowane automatycznie na poziomach kondygnacji. Stopnie swobody (DOF) związane z poziomymi membrany nie będą podlegać ograniczeniom bryłowym, natomiast pozostałe DOF będą je uwzględniać. W przypadku braku sztywnej membrany wszystkie podrzędne DOF będą podążać za węzłem głównym ograniczenia bryłowego, którym jest węzeł górny lub dolny słup.

Automatyczna konwersja jednostek dla ruchów gruntu

ProtaStructure umożliwia użytkownikom ręczne wprowadzanie dowolnego zapisu ruchu gruntu (akcelerogramu). Akcelerogramy powinny być podawane w jednostkach przyspieszenia ziemskiego (g). Jednak pobrany akcelerogram może być w jednostkach m/s², gal (cm/s²) lub ft/s² zamiast "g". Teraz można wybrać jednostkę wejściową podczas wprowadzania akcelerogramu do ProtaStructure. Akcelerogram zostanie automatycznie przeliczony na jednostki "g".

Strona - 47

Modelowanie i Wizualizacja

Edytor skrótów klawiszowych z możliwością dostosowania

Użytkownicy uwielbiają skróty klawiszowe. Przyznajmy jednak, że niektóre przydatne skróty były ukryte, nie można ich było dostosować i łatwo je zapomnieć. Dlatego opracowaliśmy nowy edytor skrótów, w którym możesz przeglądać wszystkie skróty programu i przypisywać nowe kombinacje klawiszy. Była to często zgłaszana prośba.

Edytor skrótów znajduje się w menu: Ustawienia > Środowisko ProtaStructure > Przypisania skrótów klawiszowych.

rch Settings	Action	Bindings	
ProtaStructure Environment	· · · · · · · · · · · · · · · · · · ·	General	
General	Help	F1	
Display Settings	Building Analysis	F3	
Shortcut Key Bindings	Undo	Control + Z	
ProtaDetails Environment	Redo	Control + Y	
	Copy Loads	Control + C	
Project Preferences	Paste Loads	Control + V	
Unit and Format	Select All Members	Control + A	
Label	Restore Previous Selection	Control + J	
Codes	Restore Next Selection	Control + K	
Nationally Determined Paramet	4 Membe	er Operations	
Lateral Drift & Bracing	Lindate Member	E7	
	Potate 90° (Frame Members)	F4	
Column & Shearwall	Toggle Between In Plane Anchors (Frame Members)	Shift ± Left	
Beam	Toggle Between Out Of Plane Anchors (Frame Members)	Shift + Dight	
7 Slab	Move Member by Step Length in Negative Local-3 Direction (Left)	Left	
7 Foundation	Move Member to Edge in Negative Local-3 Direction (Left)	Control + Left	
Stairs	Move Member by Step Length in Positive Local-3 Direction (Right)	Bight	
Retrofit Wall	Move Member to Edge in Positive Local-3 Direction (Right)	Control + Right	
Steel Settings	Move Member by Step Length in Positive Local-2 Direction (Up)		
Composite Member Settings	Move Member to Edge in Positive Local-2 Direction (Up)	Control + Up	
Analytical Model Settings	Move Member by Step Length in Negative Local-2 Direction (Down)	Down	
• Load Editor Settings	Move Member to Edge in Negative Local-2 Direction (Down)	Control + Down	
Assessment Settings	Beam	В	
Cooler.	Column	c	
Rebar	Wall	W	
Plan Details	Slab	S	
Template Management			Default

Zmiana przypisania skrótów

Aby zmienić skrót klawiszowy,

- 1. Kliknij dwukrotnie w komórkę "Skróty klawiszowe" obok dowolnej akcji.
- 2. Na ekranie pojawi się komunikat "Proszę wprowadź skrót…", a interfejs przejdzie w tryb nasłuchiwania, oczekując na wprowadzenie kombinacji klawiszy z klawiatury.
- 3. Wprowadź nową kombinację klawiszy dla wybranej akcji.

Uwaga:

Jeśli nowa kombinacja klawiszy jest już przypisana do innej akcji, najpierw musisz zmienić przypisanie dla tej akcji i upewnić się, że nowa kombinacja nie jest używana przez żadną inną akcję. Dopiero wtedy możesz przypisać ją do wybranej akcji.

Dodatkowe skróty

Wraz z nowym edytorem skrótów wprowadzono dodatkowe kombinacje klawiszy dla niektórych najczęściej używanych poleceń. Ponadto ulepszono funkcjonalność niektórych z nich.

- Polecenia wstawiania różnych typów elementów można teraz przypisać do indywidualnych kombinacji klawiszy.
- Wszystkie elementy na obszarze roboczym można zaznaczyć za pomocą nowej kombinacji klawiszy (domyślnie CTRL+A).
- Menu kontekstowe po kliknięciu prawym przyciskiem myszy teraz wyświetla przypisane skróty klawiszowe.

Nakładanie rysunku DXF w Edytorze obciążeń

ProtaStructure 2026 wprowadza przełomową funkcję, która usprawnia proces definiowania obciążeń: możliwość nałożenia rysunków architektonicznych DXF na interaktywny edytor obciążeń. Dzięki temu użytkownicy mogą wygodnie korzystać z planów architektonicznych podczas definiowania obciążeń, co zapewnia zgodność z założeniami projektowymi. Dodatkowo, funkcja przyciągania do punktów na rysunku DXF umożliwia precyzyjne umieszczanie obciążeń, zwiększając dokładność i zmniejszając ryzyko błędów. Rysunek DXF jest dokładnie umieszczony we współrzędnych określonych na głównym ekranie modelowania, co gwarantuje spójność między modelem konstrukcyjnym a układem architektonicznym. Ta funkcja usprawnia proces pracy, oferując większą precyzję i efektywność przy definiowaniu obciążeń.

Aby wyświetlić rysunek architektoniczny w edytorze obciążeń:

1. Wczytaj rysunek DXF na głównym ekranie modelowania. Należy pamiętać, że różne rysunki DXF można wczytać dla różnych kondygnacji. Szczegóły dotyczące wczytywania rysunku DXF nie są objęte zakresem tego dokumentu.

- 2. Otwórz edytor obciążeń dla aktywnej kondygnacji lub wybranego elementu.
- 3. Kliknij przycisk "Pokaż rysunek XRef" na pionowym pasku narzędzi, aby włączyć lub wyłączyć wyświetlanie rysunku XRef w edytorze obciążeń.

Load Editor opened for the active storey, displaying all members at that storey together with the DXF drawing on top of them.

Load Editor opened for a selected slab. The XRef drawing can be shown even if a single member is selected.

Przyciąganie do punktów rysunku XRef w celu wstawiania obciążeń

Gdy rysunek architektoniczny jest wyświetlony w edytorze obciążeń, możesz zacząć wstawiać obciążenia, przyciągając się do punktów na rysunku. Można przyciągać do końcowych punktów linii, punktów środkowych oraz przecięć. Inteligentne punkty na linii będą również podświetlane na końcach i w środkowych punktach.

Inserting a line load or a wall load on the load editor by snapping to DXF points.

Uciąglone rygle i płatwie

W poprzednich wersjach ProtaStructure rygle były automatycznie cięte na każdej podporze, a po tym wstawiany był nowy ramowy element rygla.

W ProtaStructure 2026 możesz teraz określić maksymalną długość elementu (Długość Cięcia) dla rygli. Ustawienie to jest dostępne w Parametry stali > Ustawienia elementów.

Aby zamodelować rygiel ciągły:

- 1. Określ długość cięcia. Wartość domyślna to 12 m.
- 2. Podczas wstawiania rygla zaznacz opcję rygiel ciągły w oknie właściwości rygli.

Label: G104 🗘	Section Properties		
	Profile		TUBO120x80x3
General	Section Alignment		On The Section
	Generation Ontions		
Geometry	Continuous Girt		
Sag Rods	Fill From Top		~
	Spacing	s	120.00 cm
	Delete Bottom Member		
	Delete Top Member		
	Left Cantilever Length	Le	0.00 cm
	Right Cantilever Length	Re	0.00 cm
	Gap Between Continuous Purlins	d	0.00 cm
	Offsets		
	Perpendicular Offset	Vo	0.00 cm

Continuous Girt/Purlin Option Checked: The purlin/girt is only cut at third support. Cut length is specified as 12 m in a 4 m bay frame

Continuous Purlin/Girt Option Unchecked: The purlin/girt is cut at each support

Płatwie ciągłe zostały już wprowadzone w poprzedniej wersji. W ProtaStructure 2026 ta sama funkcja jest teraz dostępna również dla rygli.

Płatew i rygle będą cięte od najbliższej podpory do zadanej długości cięcia, tak aby nie przekroczyć długości wyrobu stalowego.

Między punktami cięcia traktowane będą jako ciągłe, a odpowiednie przeguby końcowe zostaną przypisane. Informacje o długości cięcia i przegubach końcowych są także przekazywane do ProtaSteel, aby zapewnić model konstrukcyjny zgodny z wymaganiami produkcyjnymi.

Reakcje podpór wyświetlane w module post-processingu analizy

ProtaStructure teraz oferuje możliwość wyświetlania reakcji podpór za pomocą grafiki wektorowej pod odpowiednimi elementami nośnymi. Ta bardzo oczekiwana funkcja jest już dostępna, co znacznie poprawia możliwości wizualizacji i analizy dla użytkowników.

Aby wyświetlić reakcje podpór:

- 1. Otwórz okno post-processora analizy.
- 2. Zaznacz przycisk "Reakcje podpór" w grupie Elementy -> Węzły.

Etykiety konturów w postprocesorze analizy

Aby poprawić czytelność prezentacji map naprężeń, przemieszczeń i sił w powłokach, w postprocesorze analizy można teraz wyświetlać etykiety wartości bezpośrednio na liniach konturowych. Możesz włączyć wyświetlanie etykiet konturów, korzystając z opcji Kontury > Wyświetl wartości na liniach na pasku narzędziowym.

Legenda konturów na dole w postprocesorze analizy

W ProtaStructure 2026 wprowadzono nową opcję umiejscowienia legendy dla konturów analizy MES. Legenda może być teraz wyświetlana poziomo u dołu ekranu, co pozwala zaoszczędzić więcej miejsca i zapewnia lepszą prezentację wyników.

Domyślne materiały przypisane wyłącznie do elementów stalowych

Z każdą nową wersją dokładamy starań, aby ProtaStructure było bardziej intuicyjna i wydajna. W wersji 2026 usunięto pozycję "Elementy ramowe" z biblioteki materiałów. Zamiast tego system materiałowy będzie wykorzystywał typy elementów ramowych do identyfikacji domyślnych materiałów. Dodatkowo, dla projektowania blach podstawy dodano możliwość przypisywania domyślnych materiałów dla spoin, śrub oraz blach.

Default Materials	Concrete Columns	C30/37	Grade 500 (Type 2)
Foundation Floor	⊿ Shearwalls	C30/37	Grade 500 (Type 2)
	Longitudinal Web Bar		Grade 500 (Type 2)
	Horizontal Web Bar		Grade 500 (Type 2)
	Concrete Beams	C32/40	Grade 500 (Type 2)
	Slabs	C30/37	Grade 500 (Type 2)
	Composite Slabs	C25/30	Grade 485 (A-Fabric)
	Ribbed Slabs	C30/37	Grade 500 (Type 2)
	RC Staircases	C25/30	Grade 410 (Type 2)
	Links		Grade 500 (Type 2)
	Steel Columns	<u>S275</u>	
	Steel Beams	<u>S275</u>	
	Primary Composite Beams	<u>S275</u>	
	Secondary Composite Beams	<u>S275</u>	
	Trusses	<u>S235</u>	
	Purlins	<u>S235</u>	
	Girts	<u>S235</u>	
	Braces	<u>S235</u>	
	Studs	<u>S235</u>	
	Sheetings	<u>S235</u>	
	⊿ Formwork		
	Timber Frame Members	<u>C24(T)</u>	
	Steel Frame Members	<u>S235</u>	
	Sheathing	F20-E50/E40(T)	
	Plate	<u>S235</u>	
	Bolts and Nuts	Class 5.8	
Different	Weld	E70xx	

Lab	el	Diameter (cm)	Shear Area (m2)	Type	Coating	nn1	nn2	nw1	nw2	tn (cm)	e (cm)	s (cm)	dw (cm)	tw (cm)	
M	в	0.8	3.72208E-05	Hexagon Head Bolt	Galvanized	0	1	0	1	0.68	1.438	1.3	1.6	0.26	
Μ1	.0	1	5.87998E-05	Hexagon Head Bolt	Galvanized	0	1	0	1	0.84	1.777	1.6	2	0.32	n _{n1} —
Μ1	2	1.2	8.43E-05	Hexagon Head Bolt	Galvanized	0	1	0	1	1.08	2.003	1.8	2.4	0.36	
Μ1	4	1.4	0.0001175362	Hexagon Head Bolt	Galvanized	0	1	0	1	1.28	2.336	2.1	2.8	0.42	
M1	.6	1.6	0.000157	Hexagon Head Bolt	Galvanized	0	1	0	1	1.48	2.675	2.4	3.2	0.48	
Μ1	.8	1.8	0.0001970438	Hexagon Head Bolt	Galvanized	0	1	0	1	1.58	2.956	2.7	3.6	0.54	
M2	10	2	0.000245	Hexagon Head Bolt	Galvanized	0	1	0	1	1.8	3.295	3	4	0.6	n _{w1} n _{w2}
M2	2	2.2	0.0002973226	Hexagon Head Bolt	Galvanized	0	1	0	1	1.94	3.729	3.4	4.4	0.68	
M2	4	2.4	0.000353	Hexagon Head Bolt	Galvanized	0	1	0	1	2.15	3.955	3.6	4.8	0.72	S
M2	.7	2.7	0.0004518806	Hexagon Head Bolt	Galvanized	0	1	0	1	2.38	4.52	4.1	5.4	0.82	
М3	0	3	0.000561	Hexagon Head Bolt	Galvanized	0	1	0	1	2.56	5.085	4.6	6	0.92	
M3	3	3.3	0.0006801908	Hexagon Head Bolt	Galvanized	0	1	0	1	2.87	5.537	5	6.6	1	
M3	6	3.6	0.0008118716	Hexagon Head Bolt	Galvanized	0	1	0	1	3.1	6.079	5.5	7.2	1.1	
M3	9	3.9	0.0009552362	Hexagon Head Bolt	Galvanized	0	1	0	1	3.34	6.644	6	7.8	1.2	L N
M4	2	4.2	0.001110284	Hexagon Head Bolt	Galvanized	0	1	0	1	3.4	7.13	6.5	8.4	1.3	
M4	15	4.5	0.001277017	Hexagon Head Bolt	Galvanized	0	1	0	1	3.6	7.695	7	9	1.4	
M4	18	4.8	0.001455433	Hexagon Head Bolt	Galvanized	0	1	0	1	3.8	8.26	7.5	9.6	1.5	
M5	2	5.2	0.001711496	Hexagon Head Bolt	Galvanized	0	1	0	1	4.2	8.825	8	10.4	1.6	
M5	i6	5.6	0.00198833	Hexagon Head Bolt	Galvanized	0	1	0	1	4.5	9.256	8.5	11.2	1.7	
M6	i0	6	0.002285935	Hexagon Head Bolt	Galvanized	0	1	0	1	4.8	9.921	9	12	1.8	t _w d _w
M6	4	6.4	0.002604311	Hexagon Head Bolt	Galvanized	0	1	0	1	5.1	10.486	9.5	12.8	1.9	

Nowe typy blach trapezowych w bibliotece

Typy blach trapezowych RUUKKI są teraz dostępne w bibliotece po wybraniu szablonu Polska.

Apkrovas laikančių lakštų pasiūlyma	S	
Produktai		Aprašymas
	→ Kompozitinis lakštas CS48-36-750	 Aukštis: 48 mm Plotis: 750 mm
	→ Apkrovas laikantys arkiniai lakštai T45- 30L-905	 Aukštis: 45 mm Plotis: 905 mm
	→ Apkrovas laikantys lakštai T153-40L- 840	 Aukštis: 153 mm Plotis: 840 mm Aukščiauslam akustikos lygiui galima rinktis paklotą su perforuotomis šoninėmis ir viršutine plokštumomis
Shating Lines	→ Apkrovas laikantys lakštai T130M-75L- 930	 Aukštis: 130 mm Plotis: 930 mm
Sheeting Library		
Sheeting Panels	Panel Properties Material: \$355	Label: RELEKKT T45-30L-905.0.9
BHN-36R	Tabel Mainha (b)	2atten Occasine Width (Whu) 00.0 mm
NH-32	Papel Thickness 0.9	mm Sottom Opening Width (WbW) 90.8 mm
RUUKKI CS48-36-750 0.7	Top Rib Width (Wt) 30.0	mm Bottom Rib Width (Wb) 60.0 mm
RUUKKI CS48-36-750 1.1	Rib Height (hr) 44.0	mm Rib Angle 60.005 °
RUUKKI T45-30L-905 0.7		
RUUKKI T45-30L-905 0.9	Top Ridge Count (12)	1 Bottom Ridge Count (13) 1
RUUKKI T 153-40L-840 0.7	Top Ridge Width (Wrt) 0.0	mm Bottom Ridge Width (Wrb) 3.0 mm
RUUKKI T153-40L-840 0.8 RUUKKI T153-40L-840 0.9	Top Ridge Height (hrt) 0.0	mm Bottom Ridge Height (hrb) 3.0 mm
RUUKKI T153-40L-840 1.0	Average Rib Width (Wr) 60.4	mm Sr 0.0 mm
RUUKKI T153-40L-840 1.2		
RUUKKI T153-40L-840 1.5	Side Crank Count (02)	1 Side Crank Angle 0.0 °
	Side Crank Length 5.0	mm
	 +	

Rozszerzona biblioteka przekrojów cienkościennych giętych na zimno

Katalog przekrojów cienkościennych giętych na zimno w ProtaStructure został rozszerzony o wsparcie przekrojów C kształtowanych przód-przód oraz tył-tył.

Database Project	General Properties			
Cold Formed 🗸	Section Name	2xLOGC150x2-Gr1FF	Section Color	219, 229, 2 🗸
 Database 		Edit Section Label	-2.54 P	
Custom			02,R1	
—	Н	15.00 cm		
U-BRAZIL	B1	6.50 cm		
	B2	6.50 cm	н	+
CWL	t	0.20 cm		
	L	1.60 cm		17.
CWL-THAI	R1	0.00 cm		
	R2	0.00 cm	2 01,R1 BI	b
LOGC	01	0.00 cm	1	
	a2	0.00 cm		Hide Labels
UE-BRAZIL	B1	0.00 cm	Costion An	alau 0
	82	0.00 cm	Secuon An	gie: U
G CWL+			Mirror Ab	out: X-X Y-Y
_			Materials	
SIGMA		P1	Profile	[Default]
SIGMA+	ىلى با	Lu		
G	Connection Type:	Welded		
7 ZWL	Distance Between Secti	ons in X Direction 1.00 cm		
L				
LOGZ				
_				
c				
			Rese	t to Defaults

Kolorowe przedstawienie współczynnika wykorzystania dla elementów żelbetowych

ProtaStructure jest znana z interaktywnego i automatycznego wymiarowania elementów żelbetowych, stalowych oraz kompozytowych (z płytami metalowymi). W wyniku wymiarowania każdy element ma przypisany współczynnik wykorzystania odpowiadający najważniejszemu kryterium wymiarowania. Dzięki zaawansowanej funkcji wizualnej można teraz kodować kolorem współczynniki wykorzystania, w zależności od ich poziomu krytyczności. W poprzednich wersjach kolorowane były tylko elementy stalowe, a w najnowszej wersji funkcja ta została rozszerzona również na elementy żelbetowe.

Przypisanie kolorów do obciążeń

ProtaStructure 2026 wprowadza bardzo wszechstronną funkcję, która umożliwia użytkownikom przypisywanie unikalnych kolorów różnym kategoriom obciążeń, takim jak: ciężar własny, obciążenia dodatkowe, obciążenia MES itp. Funkcja ta poprawia czytelność wizualną, ułatwiając rozróżnianie i zarządzanie różnymi typami obciążeń w modelach konstrukcyjnych.

Dodatkowo użytkownicy mogą przypisywać indywidualne kolory do poszczególnych obciążeń, niezależnie od ich kategorii, co daje większą elastyczność i możliwość personalizacji podczas procesu projektowego. Ważne jest, że jeśli indywidualnie pokolorowane obciążenie zostanie usunięte lub przeliczone, jego kolor automatycznie wróci do domyślnego koloru przypisanego danej kategorii, co zapewnia spójność i eliminuje potencjalne niezgodności w wizualizacji obciążeń.

Dzięki lepszej organizacji wizualnej danych obciążeniowych ta funkcja nie tylko redukuje możliwość popełnienia błędów, ale także usprawnia proces analizy i przeglądu, znacznie podnosząc efektywność i dokładność projektowania.

Funkcja jest aktywna domyślnie. Kolory kategorii obciążeń można dostosować w Opcje > Ustawienia Edytora Obciążeń > Kolory Kategorii.

	Load Magnitude Color	[0,0,0]
Stairs .	▲ Load Distance	
Retrofit Wall	Display Load Distance Labels	\checkmark
Steel Settings	Load Distance Text Height	10
Composite Member Settings	Load Distance Color	[0,0,255]
Analytical Model Settings	Load Hatch Color	[255 , 0 , 255]
General Nada Sattiana	Line Load Distance Tick Size	4
Frame Settings	✓ Category Colors	
Shell Settings	Self Weight	[102,204,0]
Diagram Settings	Additional Load	[159 , 127 , 255]
Displacement Settings	FE Load	[255 , 0 , 127]
Contour Settings	Parapet Load	[0,127,0]
Solid Model	Compensation Load	[204 , 204 , 0]
11 Load Editor Settings	First Stage Load	[255 , 127 , 0]
Single Element View Settings	⊿ Other	
Multiple Element View Settings	Display Infill Wall Load As Line Load	\checkmark
Load Calculation Settings	Display Self Weight	\checkmark
H Assessment Settings	Solid Transparency	80
	Load Transparency	75
Scales	Enable Orthographic View	\checkmark
[] Rebar		

Changing the individual load colors.

Ulepszenia w ponownym oznaczaniu elementów

Ponowne oznaczanie elementów zostało rozszerzone o większą liczbę typów elementów, w tym osie, ramy stalowe, kratownice, kratownice przestrzenne i inne. Dodatkowo, algorytm ponownego oznaczania został usprawniony, aby zapewnić większą niezawodność i elastyczność.

embers	Sort Reference	
Aves	Columns, Slabs, Space Trusses, Domes, Purlins, Piles	Axes, Slab Strips
Columns Shearwalls	Left-Top> Right-Bot Right-Top> Left-Bot Left-Bot> Right-Top Right-Bot> Left-Top	Direction 2 Axes: A,B,C v
Beams Frame Members	Shearwalls, Beams, Frame Members, Braces, Trusses, Girts	Top> Bot O Bot> Top
Slabs Ribbed Slabs Composite Slabs	Left-Top> Right-Bot Right-Top> Left-Bot Left-Bot> Right-Top Right-Top Right-Bot> Left-Top	Reference Angle: 0.0 ° ✓ Group Cantilever Slabs Seperately
Trusses	Horizontal Members (X-Dir in Plan View)	Group Members by Direction
Space Trusses	Left-Top> Right-Bot Right-Top> Left-Bot	Sort Rowwise
Domes	○ Left-Bot> Right-Top ○ Right-Bot> Left-Top	Sort Columnwise
Braces		
Girts	Modify Prefix Character	Retain Compatible Labels Between Storeys
Slab Strips	Prefix Character:	Member Number Start Value: 1
Piles	Define Direction-Dependent Prefix Horizontal Members (X-Dir in Plan View);	Update Pad Footing / Pile Cap Labels to Follow Updated Column / Shearwall Labels
oreys	Vertical Members (Y-Dir in Plan View):	
First Storey: 1 🗸	Restart Numbering For Each Direction Group	
Last Storey: 1 🗸 🗸	Modify Postfix Character	
All Storeys	Postfix Character:	

Tryby widoku w menu PPM

Tryby wyświetlania widoku 3D są teraz dostępne w menu po kliknięciu prawym przyciskiem myszy pod opcją "Widok". Typ widoku można także zmieniać, naciskając kolejno skrót klawiaturowy CTRL+D. Ten skrót można dostosować za pomocą edytora skrótów.

Liczba trzpieni i ugięcie w etykietach belek ramowych

ProtaStructure umożliwia teraz dodanie informacji o "Liczbie trzpieni" oraz "Ugięciu" do etykiet belek kompozytowych podczas projektowania płyt kompozytowych w modelu. Informacje te są również widoczne na rysunkach planów kondygnacji w ProtaDetails.

Aby włączyć wyświetlanie informacji o sworzniach i ugięciu:

- 1. Przejdź do Ustawienia > Etykiety.
- 2. Zaznacz opcje "Wyświetl ilość trzpieni w belce kompozytowej" oraz "Wyświetl wartość wypukłości (ugięcia) belki kompozytowej".

Przypisywanie podpór i wsporników konstrukcji ramowej

Przypisywanie podpór (podparć) oraz określanie wolnych końców zostało przeniesione do zakładki "Ogólne" w oknie właściwości pręta, co ułatwia dostęp do tych ustawień.

Dodatkowo, program ProtaStructure nie będzie już automatycznie określał wolnych końców prętów ramowych. W praktyce, na podstawie różnych modeli użytkowników i scenariuszy, okazało się, że automatyczne ustalanie może powodować niejasności podczas modelowania i projektowania, ponieważ pręty ramowe mają bardzo szerokie i różnorodne zastosowania oraz konfiguracje.

Ważne:

Wolne końce prętów ramowych (np. końce wspornikowe) nie będą już automatycznie ustawiane przez ProtaStructure. Choć z punktu widzenia analizy nie wpływa to na wyniki obliczeń, to wolne końce mają istotne znaczenie przy sprawdzaniu ugięć stali. Dlatego ważne jest, aby ręcznie ustawić je dla prętów wspornikowych.

Program ProtaStructure nie pozwoli na oznaczenie końca pręta jako wolnego, jeśli na tym końcu jest połączony słup lub ściana.

Jeśli jeden z końców pręta nie jest połączony z żadnym słupem ani ścianą i chcesz oznaczyć go jako "wspornikowy", masz dwie opcje:

Alternatywa 1:

- 1. Wybierz element.
- 2. Wybierz polecenie "Oznacz wolny koniec belki wspornikowej" z menu po kliknięciu prawym przyciskiem myszy.
- 3. Wybierz jedną z opcji: "Wolny koniec I" lub "Wolny koniec J".

	Steel Member Design Edit Steel Design Parameters Analysis Result Diagrams			
	Edit Section/Material Define Splice Split Frame Member			
	Set Plane Definition of Members Reset Plane Definition of Members Set Section Angle to Selected Member Undate Beam End Conditions	•		
	Mark Free End of Cantilever Beam	•	H	Both Ends Supported
₩ 22 23	Update Steel Bars Delete Steel Bars			J End Free

Alternatywa 2:

- 1. Wybierz element i otwórz okno Właściwości.
- 2. W zakładce "Ogólne" zaznacz opcję "Wolny koniec I" lub "Wolny koniec J".
- 3. Opcje te będą niedostępne, jeśli na końcach elementu są podłączone słupy lub ściany.

Optymalizacja menu wstążki I kontekstowego

Wstążka, menu kontekstowe oraz menu pod prawym przyciskiem myszy zostały zoptymalizowane, a polecenia uproszczone, aby zapewnić płynniejszą i bardziej intuicyjną obsługę.

Przypisanie elementów ramy do kondygnacji

Elementy konstrukcyjne w ProtaStructure są przypisywane do kondygnacji, co ułatwia ich obsługę oraz obliczanie masy i obciążeń. Jednak dzięki wprowadzeniu uniwersalnych elementów ramowych, modele tworzone w ProtaStructure stają się coraz bardziej złożone, co zawdzięczamy zarówno kreatywności użytkowników, jak i zespołowi programistów.

Podczas wstawiania elementu ramowego ProtaStructure automatycznie przypisuje mu najbliższą kondygnację. Aby dać użytkownikom większą elastyczność, w najnowszej wersji dodano nową opcję ustawień dotyczących przypisywania elementów ramowych do kondygnacji.

- 1. Przejdź do Ustawienia > Środowisko ProtaStructure > Metoda Przypisywania Kondygnacji.
- 2. Wybierz opcję "Przypisz pierwszą kondygnację o większej współrzędnej Z" lub "Przypisz kondygnację o najbliższej współrzędnej Z.

Końcowe współrzędne Z elementów ramowych (I oraz J) są porównywane ze współrzędnymi Z kondygnacji. Jeśli wybierzesz opcję "Przypisz pierwszą kondygnację o większej współrzędnej Z", to do tego końca elementu zostanie przypisana pierwsza kondygnacja, której współrzędna Z jest większa niż współrzędna końca elementu. Jeśli wybierzesz opcję "Przypisz kondygnację o najbliższej współrzędnej Z", zawsze przypisana zostanie kondygnacja o najbliższej współrzędnej Z.

arch Settings P	General	Language Settings
ProtaStructure Environment	☑ Don't Check Model During Member Insertion	Display Language: English
	Don't Check Model During Member Insertion Angle Step: 0.0 ° Length Step: 10.00 cm Member Section Eccentricity Step: 1.0 cm Enable Cell Merging in Report Tables (Slow) Member Tooltip Window Display Icon Display Member Label Display Member Label Display All Properties Display All Properties Tool tip Preferences Stow Tool Tips Tool tip Delay (sec.): 1.0 Show Detailed Tool Tips Tool tip Delay (sec.): 1.0	Display Language: English Report Language: English Plan View Direction (Project Based) Top Bottom Storey Assign the first storey with greater Z-coordinate Assign the storey with the closest Z-coordinate AutoSave Automatic Save Interval: 0 minutes (Automatic Save Option will be Disable when Interval is '0'.) Prompt for Automatic Saving Backup Structural Model Number of Backups to Save: 0 Return License on Shutdown
Assessment Settings Scales Rebar Plan Details	Export to ProtaSteel Export to ProtaSteel Allow Prota Steel to Launch Without a Valid Analysis (Connection Design won't be possible)	Theme: Office 2013 Light Gray V Structure Tree Display Sections on Structure Tree Display Materials on Structure Tree

Wyszukiwanie według etykiet w module analizy wyników

Teraz możesz przeszukiwać model analityczny za pomocą etykiet elementów fizycznych, aby precyzyjnie zlokalizować reprezentację analityczną danego elementu fizycznego.

Etykiety przekrojów i materiałów w module analizy wyników

Etykiety wyświetlane na liniach analitycznych i elementach powłokowych są teraz uzupełnione o nazwy fizycznych materiałów i przekrojów, co ułatwia przegląd wyników. Wcześniej wyświetlane były identyfikatory materiałów i przekrojów analitycznych, które miały mniejsze praktyczne zastosowanie.

Strona - 68

Zaawansowana integracja BIM

Wsparcie dla formatu IFC4

IFC4 (Industry Foundation Classes wersja 4) odgrywa kluczową rolę w branży budowlanej, zwiększając interoperacyjność danych oraz standaryzację. Rozwiązuje wiele ograniczeń swojego poprzednika, IFC2x3, poprzez obsługę bardziej zaawansowanych geometrii, takich jak powierzchnie i krzywe b-spline, co poprawia wydajność modeli zawierających elementy zakrzywione. IFC4 umożliwia także lepsze obliczenia energetyczne oraz zaawansowane symulacje, co ułatwia uwzględnianie aspektów zrównoważonego rozwoju w projektach budowlanych. Ponadto, poprawia interoperacyjność BIM (Building Information Modeling) z GIS (Geographic Information Systems), co jest istotne dla projektów infrastrukturalnych. Ogólnie rzecz biorąc, IFC4 wspiera bardziej płynną wymianę informacji pomiędzy różnymi platformami programowymi, co zwiększa efektywność współpracy i realizacji projektów budowlanych.

W Prota Software angażujemy się w integrację najnowszego wsparcia BIM, w tym IFC4, w naszych rozwiązaniach. Dzięki temu użytkownicy naszych programów mogą korzystać z bezproblemowej wymiany informacji, lepszej współpracy i efektywniej realizować projekty budowlane.

A view of IFC4 file exported from ProtaStructure. IFC4 provides better support for curved members and provides styling of members with custom colors

Eksport sił wewnętrznych do IdeaStatica

W poprzedniej wersji wprowadziliśmy funkcję eksportu do IdeaStatica, która spotkała się z bardzo pozytywnym odbiorem wśród użytkowników. W tej wersji udoskonaliliśmy ją, umożliwiając eksport sił wewnętrznych działających na połączenia do IdeaStatica w formacie tabelarycznym.

Import of load effects Import of load effects Name Member Position N [kN] Vy [kN] Vz [kN] Mz [kNm] Mz [kNm]<	Import of load effects Import of load effects<											
Might Chi Kasi Belgin Might Migh	Name Member Pesition N [kN] Vy [kN] Vz [kN] Ms [kNm] My [kNm] Mz [kNm]<		There is a set of the	and the second	-					Prot	Juction cost - 268	6
Name Member Position N [kN] Vy [kN] Vz [kN] Ms [kNm] My [kNm] Mz [k	Name Member Position N [JA9] Vy [JA9] Vz [JA9] Mx [JA1m] Mx [JA1m]<		Inport of R	AU EIIECE								
E1 M182 Begin 0.0 <td< td=""><td>LE1 M182 Begin 0.0 <t< td=""><td></td><td>Name</td><td>Member</td><td>Position</td><td>N [kN]</td><td>Vy [kN]</td><td>Vz [kN]</td><td>Mx [kNm]</td><td>My [kNm]</td><td>Mz [kNm]</td><td>Order of loads</td></t<></td></td<>	LE1 M182 Begin 0.0 <t< td=""><td></td><td>Name</td><td>Member</td><td>Position</td><td>N [kN]</td><td>Vy [kN]</td><td>Vz [kN]</td><td>Mx [kNm]</td><td>My [kNm]</td><td>Mz [kNm]</td><td>Order of loads</td></t<>		Name	Member	Position	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	Order of loads
M203 End 0.0 0.0 0.0 1.0 0.0 M203 M197 End 0.0 <t< td=""><td>M203 End 0.0 <td< td=""><td></td><td>LE1</td><td>M182</td><td>Begin</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>-0.7</td><td>-0.8</td><td>M182 - Begin</td></td<></td></t<>	M203 End 0.0 <td< td=""><td></td><td>LE1</td><td>M182</td><td>Begin</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>-0.7</td><td>-0.8</td><td>M182 - Begin</td></td<>		LE1	M182	Begin	0.0	0.0	0.0	0.0	-0.7	-0.8	M182 - Begin
M197 End 0.0 0.0 0.0 0.0 0.0 0.0 LE2 M192 Begin 0.0 0.0 0.0 0.0 -0.7 -0.8 Image: constraint of the section of	M197 End 0.0 0.0 0.0 0.0 0.0 0.0 L2 M182 Begin 0.0 <td></td> <td></td> <td>M203</td> <td>End</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>M203 - End</td>			M203	End	0.0	0.0	0.0	0.0	1.0	0.0	M203 - End
LE2 M182 Begin 0.0<	LE2 M182 Begin 0.0 0.0 0.0 -0.7 -0.8 M197 End 0.0 0.0 0.0 -0.7 -0.8 Image Loyout Formulas Data Review View Q came M197 End 0.0 0.0 0.0 Image Loyout Formulas Data Review View Q came M203 End 0.0 0.0 0.0 Image Loyout Formulas Data Review View Q came M203 End 0.0 0.0 Image Loyout Formulas Data Review View Q came M203 End 0.0 0.0 Image Loyout Formulas Data Review M wap Text M203 End 0.0 0.0 Image Loyout Formulas Data M loyout Text Formulas Data M loyout Text Formulas Data Data Data Data Data Data Data			M197	End	0.0	0.0	0.0	0.0	0.9	0.0	M197 - End
M203 End 0.0 0.0 File Home Inset Page Layout Formulas Data Review View LE3 M182 Begin 0.0 0.0 0.0 File Home Inset Page Layout Formulas Data Review View M203 End 0.0 0.0 0.0 File Format Painter E I	M203 End 0.0 0.0 M197 End 0.0 0.0 LE3 M182 Begin 0.0 0.0 M203 End 0.0 0.0 M197 End 0.0 0.0 M203 End 0.0 0.0 M197 End 0.0 0.0 M2033 End 0.0 0.0 M2033 End 0.0 0.0 M2033 End 0.0 0.0 M197 End 0.0 0.0 M197 End 0.0 0.0 LE4 M192 Begin 0.0000055 0 0.066893 0 0.058932 0 0.058932 0 0.058932 0 0.058932 0		LE2	M182	Begin	0.0	0.0	0.0	0.0	-0.7	-0.8	
Miles Liss Liss <thliss< th=""> Liss Liss <th< td=""><td>Miss Cito Col Col File Home Inset Page Layout Formulas Data Review View C all max LE3 M182 Begin 0.0 0.0 0.0 Page Layout Formulas Data Review View C all max M203 End 0.0 0.0 0.0 Page Layout Caller Formulas Data Review View C aller M197 End 0.0 0.0 Data Review For Aller Aller Mage Review Review Teamer B I Imax A For Aller Mage Review Review Teamer Aller Review Teamer Review Teamer Review Teamer Review Teamer Mage Review Teamer Review Teamer Mage Review Teamer Review Teamer Review Teamer Review Teamer Review Teamer Review Teamer Review <t< td=""><td></td><td></td><td>M203</td><td>End</td><td>0.0</td><td>0.0</td><td></td><td></td><td></td><td>and the second s</td><td></td></t<></td></th<></thliss<>	Miss Cito Col Col File Home Inset Page Layout Formulas Data Review View C all max LE3 M182 Begin 0.0 0.0 0.0 Page Layout Formulas Data Review View C all max M203 End 0.0 0.0 0.0 Page Layout Caller Formulas Data Review View C aller M197 End 0.0 0.0 Data Review For Aller Aller Mage Review Review Teamer B I Imax A For Aller Mage Review Review Teamer Aller Review Teamer Review Teamer Review Teamer Review Teamer Mage Review Teamer Review Teamer Mage Review Teamer Review Teamer Review Teamer Review Teamer Review Teamer Review Teamer Review <t< td=""><td></td><td></td><td>M203</td><td>End</td><td>0.0</td><td>0.0</td><td></td><td></td><td></td><td>and the second s</td><td></td></t<>			M203	End	0.0	0.0				and the second s	
M197 End 0.0 <td>M197 End 0.0 0.0 File Hence Treat Data Review View V Tell nex LE3 M182 Begin 0.0</td> <td></td> <td></td> <td>h doz</td> <td>End .</td> <td>0.0</td> <td>0.0</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	M197 End 0.0 0.0 File Hence Treat Data Review View V Tell nex LE3 M182 Begin 0.0			h doz	End .	0.0	0.0		-			
LE3 M182 Begin 0.0 0.0 M203 End 0.0 0.0 M197 End 0.0 0.0 LE4 M182 Begin 0.0 0.0 M203 End 0.0 0.0 0.0 M197 End 0.0 0.0 0.0 M203 End 0.0 0.0 0.0 A B C D Format Painter Alignment M197 End 0.0 0.0 0.0 1 Load Begin 0.000296 (0.000242 - 0.000443 - 0.000448 0 - 0.735) LE5 M182 Begin 0.0 0.0 1 Lacet-LGO M182 Begin 0.000425 (0.00227 0 - 0.000448 0 - 0.735) M197 End 0.0 0.0 0.0 1 Lacet-LGO M182 Begin 0.000428 0.001267 0 - 0.00448 0	M182 M182 Begin 0.0 0.0 M203 End 0.0 0.0 M197 End 0.0 0.0 LE4 M182 Begin 0.0 0.0 M203 End 0.0 0.0 0.0 M203 End 0.0 0.0 0.0 M197 End 0.0 0.0 0.0 1 A B C D E F C N A B C D E F C N A B C D E F C N A B C D E F C N A A C D C N107N N10N <			MI197	End	0.0	0.0	File Hor	ne Insert Pa	age Layout Forr	nulas Data Re	view View ⊈Tellin
M203 End 0.0 0.0 Pate Format Painter B I U I </td <td>M203 End 0.0 0.0 M197 End 0.0 0.0 0.0 Format Painter Fort Alignment LE4 M182 Begin 0.0 0.0 0.0 1 Alignment M197 End 0.0 0.0 0.0 0.0 Alignment M203 End 0.0 0.0 0.0 Alignment Alignment M197 End 0.0 0.0 0.0 Alignment Alignment M197 End 0.0 0.0 Alignment Alignment Alignment LE5 M182 Begin 0.0 0.0 4 A B C D E F G Alignment M197 End 0.0 0.0 4 L26+L60M23 End Colorads Co</td> <td></td> <td>LE3</td> <td>M182</td> <td>Begin</td> <td>0.0</td> <td>0.0</td> <td>En Copy</td> <td>Calibri</td> <td>× 11 ×</td> <td>A* A* = =</td> <td>🗞 - 📑 Wrap Text</td>	M203 End 0.0 0.0 M197 End 0.0 0.0 0.0 Format Painter Fort Alignment LE4 M182 Begin 0.0 0.0 0.0 1 Alignment M197 End 0.0 0.0 0.0 0.0 Alignment M203 End 0.0 0.0 0.0 Alignment Alignment M197 End 0.0 0.0 0.0 Alignment Alignment M197 End 0.0 0.0 Alignment Alignment Alignment LE5 M182 Begin 0.0 0.0 4 A B C D E F G Alignment M197 End 0.0 0.0 4 L26+L60M23 End Colorads Co		LE3	M182	Begin	0.0	0.0	En Copy	Calibri	× 11 ×	A* A* = =	🗞 - 📑 Wrap Text
M197 End 0.0 0.0 Clipboard Fent Fent Alignment LE4 M182 Begin 0.0 0.0 A 2 * 1 X % 1.2G+1.6Q X % 1.2G+1.6Q M203 End 0.0 0.0 0.0 4 A B C D E G H M197 End 0.0 0.0 1 1.2G+1.6G/M182 Begin 0.000448 0.000424 -0.000448 0 -0.3535 LE5 M182 Begin 0.0 0.0 4 1.2G+1.6G/M182 Begin -0.000448 0 -0.05355 0.000448 0 -0.0355 0.000448 0 -0.0355 0.00448 0 -0.0355 0.000448 0 -0.0355 0.000448 0 -0.0355 0.000448 0 -0.0355 0.000448 0 -0.0355 0.000448 0 -0.0355 0.00257 0 0 0.08632 1.2G+1.6G	M197 End 0.0 0.0 Cupboard Font r. Algoment LE4 M182 Begin 0.0 0.0 A2 * i X K L2G+L6Q M203 End 0.0 0.0 A B C D E F G H H M197 End 0.0 0.0 4 B C D E F G H H I Load Beam Position N(N) Vy(N) Vy(M203	End	0.0	0.0	Paste Form	at Painter B I	u • 🗉 • 🍐	• <u>A</u> • = = =	Merge & Ce
LE4 M182 Begin 0.0 0.0 A2 * X ✓ f 1.2G+1.6Q M203 End 0.0 0.0 1 1 Load Begin 0.00048 6 H 1 Load Begin 0.00048 6 H 1 Load Begin 0.00048 6	M182 Begin 0.0 0.0 A2 * X K L2G+L6Q M203 End 0.0 0.0 A B C D E F G H I M197 End 0.0 0.0 I I Icad Beam Position N(N) Vy(N) Vy(N) M2(N) My(N)			M197	End	0.0	0.0	Clipboard	5	Font	G.	Alignment
M203 End 0.0 0.0 1 Load Beam Postion N(kN) Vy(kN) Vy(M203 End 0.0 0.0 1 A B C D E F G H I M197 End 0.0 0.0 1		LE4	M182	Begin	0.0	0.0	A2 .	• : × <	<i>f</i> _x 1.2G+1.6	iQ.	
M197 End 0.0 0.0 2 1.2cet.6G M23 End 0.000448	M197 End 0.0 0.0 2 1 Lead Beam Position N(N) Vy(N) Vy(N) M(N) M(M203	End	0.0	0.0	A	B C	D	E F	G H I
M182 Begin 0.0 0.0 4 1.26+1.60 M203 End 6.000448 0.001267 0 0.9688 M182 Begin 0.0 0.0 4 1.26+1.60 M197 End 6.000448 0.000425 0.000426 0.000446 0.000	M182 Begin 0.0 0.0 4 1.26+1.60 M203 End 0.000445 0.001267 0 0.985893 0 M182 Begin 0.0 0.0 4 1.26+1.60 M197 End 0.000445 0.001267 0 0.985293 0 M203 End 0.0 0.0 6 1.26+1.60 M187 End 0.000445 0.001267 0 0.985893 0 M197 End 0.0 0.0 6 1.26+1.60 M182 Begin 0.000425 0.001267 0 0.985893			M197	End	0.0	0.0	1 Load E	Beam Position	N[kN] Vy[k	N] Vz[kN] Mz[-0.735747 -0.8317
M182 Begin 0.0 0.0 4 1.26+1.60 M197 End 0.000425	M182 M182 Begin 0.0 0.0 4 1.26+1.60 M137 Find -0.000425 0.001267 0 0 0.83224 0 M182 End 0.0 0.0 6 1.26+1.60 M137 End -0.000425 0.001267 0 0 0.83224 0 M197 End 0.0 0.0 6 1.26+1.60 M132 Eegin -0.000425 0.001267 0 0.6382324 0 M197 End 0.0 0.0 8 1.26+1.63 M132 Begin -0.000425 0.001267 0 0.6382324 0 1.26+1.63 M132 Eegin -0.000425 0.001267 0 0.638234 0 0.735747 0.831715 9 1.26+1.65 M132 Begin -0.000425 0.001267 0 0 0.638234 0 0.735747 0.831715 0 0.638234 0 0.735747 0.831715 0 0.638234 0 0.126+16 M137 End 0.000445 0.00			h H H H		0.0	0.0	3 1.2G+1.6Q	V1203 End	-0.000448 0.00	1267 0 0	0.965893 0
M182 M203 End 0.0 0.0 6 1.26+1.6G M203 End C.000448 0.001267 0 0.9658 M197 End 0.0 0.0 7 1.26+1.6G M203 End C.000448 0.001267 0 0.9658 M197 End 0.0 0.0 7 1.26+1.6G M197 End C.0000426 0.000448 0.000448 0.000448 0.000448 0 0.6852 1.26+1.6G M203 End C.0000486 0.000448 0 0.6852 1.26+1.6G M203 End C.0000486 0 0.6852 1.26+1.6G M203 End C.0000486 0.000247 0 0.6852 1.26+1.6G M203 End C.0000485 0.001267 0 0 0.6852 1.26+0.4G M197 End C.0002455 0.001267 0 0 0.6852 1.26+0.4G M197 End C.000445 0.001267 0 0 0.6852 1.26+0.4G M197 End C.0000455 0.001267 </td <td>M192 M203 End 0.0 0.0 6 1.26+1.6C M203 End 0.000448 0.001267 0 0.965893 0 M197 End 0.0 0.0 8 7 1.26+1.6C M203 End 0.000448 0.001267 0 0.965893 0 M197 End 0.0 0.0 8 7 1.26+1.6C M203 End 0.000448 0.001267 0 0.965893 0 J 126+1.6S M203 End 0.000448 0.001267 0 0 0.955893 0 1 1.26+1.6S M203 End 0.000448 0.001267 0 0 0.955893 0 1 1.26+1.6S M203 End 0.000448 0.001267 0 0.955893 0 1 1.26+1.6S M203 End 0.000448 0.001267 0 0.955893 0 1 1.26+0.4M128 Eegin 0.000448 0.001267 0 0.955893 0 1 1.26+0.4M128 Eegin 0.000448 0.000449 0.0</td> <td></td> <td>LED</td> <td>IM1162</td> <td>begin</td> <td>0.0</td> <td>0.0</td> <td>4 1.2G+1.6Q</td> <td>V197 End V182 Regin</td> <td>-0.000425 0.00</td> <td>1267 0 0</td> <td>0.863224 0</td>	M192 M203 End 0.0 0.0 6 1.26+1.6C M203 End 0.000448 0.001267 0 0.965893 0 M197 End 0.0 0.0 8 7 1.26+1.6C M203 End 0.000448 0.001267 0 0.965893 0 M197 End 0.0 0.0 8 7 1.26+1.6C M203 End 0.000448 0.001267 0 0.965893 0 J 126+1.6S M203 End 0.000448 0.001267 0 0 0.955893 0 1 1.26+1.6S M203 End 0.000448 0.001267 0 0 0.955893 0 1 1.26+1.6S M203 End 0.000448 0.001267 0 0.955893 0 1 1.26+1.6S M203 End 0.000448 0.001267 0 0.955893 0 1 1.26+0.4M128 Eegin 0.000448 0.001267 0 0.955893 0 1 1.26+0.4M128 Eegin 0.000448 0.000449 0.0		LED	IM1162	begin	0.0	0.0	4 1.2G+1.6Q	V197 End V182 Regin	-0.000425 0.00	1267 0 0	0.863224 0
M197 End 0.0 0.1 7 1.126+1.60 M197 End -0.000425 0.000426 0 0.8832 1 1.26+1.65 M182 Begin -0.000424 0.000424 0.000426 0.0000426 0.000426 </td <td>M197 End 0.0 0.0 7 1.26+1.60 M197 End -0.000425 0.00026 0 0.83224 0 1 1.26+1.65 M120 Begin -0.000355 0.000445 -0.001367 0 0 9.83224 0 1 1.26+1.65 M1203 End -0.000425 0.001267 0 0 0.95893 0 10 1.26+1.65 M1203 End -0.000425 0.001267 0 0 0.95893 0 11 1.26+1.65 M1203 End -0.000425 0.001267 0 0 0.95893 0 12 1.26+1.65 M120 End -0.000425 0.001267 0 0 0.95893 0 12 1.26+0.1 M120 End -0.000445 0.001267 0 0 0.95893 0 12 1.26+0.1 M127 End -0.000425 0.001267 0 0 0.95893 0 12 1.26+0.1 M129 End -0.000426 0.0001267</td> <td>M</td> <td>182</td> <td>M203</td> <td>End</td> <td>0.0</td> <td>0.0</td> <td>6 1.2G+1.6Q</td> <td>VI203 End</td> <td>-0.000448 0.00</td> <td>1267 0 0</td> <td>0.965893 0</td>	M197 End 0.0 0.0 7 1.26+1.60 M197 End -0.000425 0.00026 0 0.83224 0 1 1.26+1.65 M120 Begin -0.000355 0.000445 -0.001367 0 0 9.83224 0 1 1.26+1.65 M1203 End -0.000425 0.001267 0 0 0.95893 0 10 1.26+1.65 M1203 End -0.000425 0.001267 0 0 0.95893 0 11 1.26+1.65 M1203 End -0.000425 0.001267 0 0 0.95893 0 12 1.26+1.65 M120 End -0.000425 0.001267 0 0 0.95893 0 12 1.26+0.1 M120 End -0.000445 0.001267 0 0 0.95893 0 12 1.26+0.1 M127 End -0.000425 0.001267 0 0 0.95893 0 12 1.26+0.1 M129 End -0.000426 0.0001267	M	182	M203	End	0.0	0.0	6 1.2G+1.6Q	VI203 End	-0.000448 0.00	1267 0 0	0.965893 0
S 1.2541.65 M152 Begin → 0.002595 0.000248 0 0 00595 0.000448 0 0 0.555 0.000248 0 0 0.6558 1.2541.65 M197 End -0.000448 0.001267 0 0 0.6568 1.1264Q. M182 Begin → 0.002595 0.000242 0.000448 0 -0.755 1.254Q. M197 End -0.000428 0.001267 0 0 0.6568 1.264Q. M197 End -0.000428 0.001267 0 0 0.6568 1.264Q.11.M132 Begin → 0.002556 0.000428 0 -0.755 1.264Q.11.M132 Begin → 0.000428 0.001267 0 0 0.6568 1.264Q.11.M132	9 1.269-1.65 M182 Begin -0.00048 0.00177 0 0 0.683224 0 10 1.26+1.65 M203 End -0.00048 0.00177 0 0 0.683224 0 11 1.26+1.65 M203 End -0.000445 0.00177 0 0 0.683224 0 12 1.26+0 M182 Begin -0.00045 0.00177 0 0 0.965893 0 12 1.26+0 M182 Begin -0.00045 0.00177 0 0 0.965893 0 12 1.26+0 M182 Begin -0.00045 0.00177 0 0 0.965893 0 12 1.26+0 M197 End -0.00045 0.00127 0 0 0.955893 0 12 1.26+0.1 M197 End -0.00045 0.00127 0 0 0.955893 0 12 1.26+0.1 M197 End			M197	End	0.0	0.0	7 1.2G+1.60	V197 End	-0.000425 0.00	1267 0 0	0.863224 0
10 1.26+1.65 M197 End C.000425 0.001267 0 0 0.8632 11 1.26+Q M182 Begin 0.002956 0.000434 0 0 0.9658 12 1.26+Q M197 End 0.000485 0.001267 0 0 0.9658 12 1.26+Q M197 End 0.000425 0.001267 0 0 0.8632 1.26+Q M197 End 0.000425 0.001267 0 0 0.8632 1.26+Q M197 End 0.000425 0.001267 0 0 0.9658	10 1.2G+1.6S M197 End -0.000425 0.001267 0 0 0.83224 0 11 1.2G+0 M182 Begin -0.000445 0.001267 0 0 0.83224 0 12 L2G+0 M182 Begin -0.000445 0.001267 0 0 0.853224 0 12 L2G+0 M182 End -0.000445 0.001267 0 0 0.853224 0 13 L2G+0 M197 End -0.000445 0.001267 0 0 0.853224 0 1.2G+0 M197 End -0.000445 0.001267 0 0 0.85383 0 1.2G+0+1.M192 End -0.000425 0.001267 0 0 0.955883 0 12 L2G+0+1.M197 End -0.000425 0.001267 0 0 0.958833 0 12 L2G+0+1.M197 End -0.000425 0.001267 0 0 0.958833 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9 11.2G+1.65 M</td> <td>VI203 End</td> <td>-0.000448 0.00</td> <td>1267 0 0</td> <td>0.965893 0</td>							9 11.2G+1.65 M	VI203 End	-0.000448 0.00	1267 0 0	0.965893 0
111 1.2G+Q M182 Begin - 0.002395 0.000448 0 - 0.733 1.2G+Q M23 End - 0.000448 0 0 0.9658 1.2G+Q M197 End - 0.000425 0.001267 0 0 0.8632 1.2G+Q1 M182 Begin - 0.002956 0.000243 0 0 - 0.733 1.2G+Q1 M182 Begin - 0.0002956 0.000243 0 0 - 0.733 1.2G+Q1 M182 Begin - 0.0002956 0.001267 0 0 0.9658	11 1.26+C M182 Begin -0.00295 6.000445 0.0735747 -0.837157 12 1.26+C M182 Bedin -0.000445 0.01677 0 0 0.938324 0 13 1.26+C M197 End -0.000445 0.01267 0 0 0.638224 0 13 1.26+C4 M197 End -0.000445 0.01267 0 0 0.638224 0 1.26+C41 M197 End -0.000445 0.01267 0 0 0.638224 0 1.26+C41 M197 End -0.000445 0.01267 0 0 0.638224 0 12 1.26+C41 M197 End -0.000445 0.01267 0 0 0.638224 0 16 1.26+C41 M197 End -0.000445 0.001267 0 0 0.638234 0 0.000446 0.001267 0 0 0.63835 0.038357 0.038357 0.							10 1.2G+1.65 M	M197 End	-0.000425 0.00	1267 0 0	0.863224 0
12 1.26+Q M293 End -0.000448 0.001267 0 0 0.9658 13 1.26+Q M197 End -0.000425 0.000425 0.000425 0.000426 0.000425 1.26+Q+1.M182 Begin -0.002556 0.000424 0.000448 0 -0.735 1.26+Q+1.M203 End -0.000448 0.001267 0 0 0.9658	12 1.26+Q M203 End -0.000448 0.001267 0 0 0.658993 0 13 1.26+Q M197 End -0.000426 0.001267 0 0 0.658993 0 13 1.26+Q M197 End -0.000426 0.001267 0 0 0.658993 0 12.64+Q+1.M182 Begin -0.000426 0.001267 0 0 0.558993 0 12.64+Q+1.M182 Begin -0.000425 0.001267 0 0 0.958993 0 12.64+Q+1.M182 Begin -0.000442 0.001267 0 0 0.958993 0 16 1.26+Q+1.M192 End -0.000442 0.001267 0 0 0.65893 0.97935 17 1.46 M182 Begin -0.001445 -0.000442 0 0 1.126875 0 1.126875 0 1.126875 0 1.126875 0 1.126875 0 1.126875 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11 1.2G+Q</td> <td>V182 Begin</td> <td>-0.002956 0.00</td> <td>0424 -0.000448 0</td> <td>-0.735747 -0.8317</td>							11 1.2G+Q	V182 Begin	-0.002956 0.00	0424 -0.000448 0	-0.735747 -0.8317
1.26+Q M137 End -0.000425 0.001267 0 0 0.8652 1.26+Q+1.M182 Begin -0.002556 0.000424 0.000448 0 -0.7557 1.26+Q+1.M203 End -0.000424 0.001267 0 0 0.9658	1.26+0.1 M137 End -0.002455 0.000147 0 0 0.00382A7 0.031715 1.26+0.1 M139 End -0.002455 0.000147 0 0 0.03832A7 0.031715 1.26+0.1 M139 End -0.002455 0.00147 0 0 0.958933 0 1.26+0.1 M139 End -0.002445 0.00147 0 0 0.958933 0 1.6 1.26+0.4 M139 End -0.002445 0.00147 0 0 0.685224 0 1.7 1.46 M132 Begin -0.003445 -0.003457 0 0 0.58327 0.570335 1.8 1.46 M203 End -0.004425 0.001475 0 1.126875 0 1.8 1.46 M203 End -0.004425 0.001475 0 1.126875 0							12 1.2G+Q	V1203 End	-0.000448 0.00	1267 0 0	0.965893 0
1.26+Q+1.M203 End 0.000448 0.001267 0 0 0.555	1.264-041.M293 End 0.000445 0.001267 0 0 0.965893 0 16 1.264-041.M197 End 0.000425 0.001267 0 0 0.863224 0 17 1.46 M182 Begin 0.000349 0.000216 0.00521 0.50303 18 1.46 M203 End 0.000525 0.00147 0 0 1.126875 0							1 26+0+1	VI197 End	-0.000425 0.00	1207 0 000448 0	0.303224 0
	16 1.2G+Q+1.M197 End -0.000425 0.001267 0 0.863224 0 17 1.4G M182 Begin -0.003449 -0.000425 0.001267 0 0.853224 0 17 1.4G M182 Begin -0.003449 -0.000426 0.000521 0 0.85327 0.970335 18 1.4G M203 End -0.00025 0 1.126875 0 1.266 M203 End -0.00025 0.00126 0 1.126875 0	_						5 1.2G+Q+1.	VI203 End	-0.000448 0.00	1267 0 0	0.965893 0
16 1.26+Q+1. M197 End -0.000425 0.001267 0 0 0.8632	17 1.4G M182 Begin -0.003449 0.000521 0 0.85837 0.970335 18 1.4G M203 End -0.000522 0 0 1.126875 0 19 M203 End -0.000522 0.001478 0 0 1.126875 0							16 1.2G+Q+1.	V197 End	-0.000425 0.00	1267 0 0	0.863224 0
17 1.46 M182 Begin -0.003449 -0.000496 0.000521 0 0.8583	19 1.4G M203 End 0.000522 0.001478 0 0 1.126875 0							17 1.4G	V182 Begin	-0.003449 -0.00	0496 0.000521 0	0.85837 0.97033
18 1.4G M203 End -0.000522 0.001478 0 0 1.1268	10 H AC 14107 Fed 0.000405 0.001470 0 1.007001 0			_				18 1.4G	V1203 End	-0.000522 0.00	1478 0 0	1.126875 0
	15 1.40 MJ3/ End -0.000436 0.0014/8 0 0 1.00/094 0							19 1.4G /	V197 End	-0.000496 0.00	1478 0 0	1.007094 0

27 G+0.5Q M203 End 28 G+0.5Q M197 End -0.000373 0.001056 0 -0.000355 0.001056 0 0.804911 0 0.719353 0

Zestawienie elementów stalowych w Prota Structure

ProtaSteel już oferuje szczegółowe listy materiałów i zestawienia ilościowe na podstawie w pełni połączonego i wolnego od kolizji modelu wykonawczego. Jednak nasi użytkownicy zgłaszali również potrzebę wyciągania list materiałów stalowych bezpośrednio z modeli ProtaStructure. W ProtaStructure 2026 jest to możliwe.

Aby uzyskać listy materiałów stalowych w ProtaStructure:

- 1. Wybierz narzędzie Zestawienie Ilościowe.
- 2. Wcześniej dostępne były tylko ilości betonu i deskowania. Teraz zobaczysz dodatkowe opcje dla elementów stalowych, płyt metalowych w stropach zespolonych oraz trzpieni ścinających.
- 3. Wybierz opcję stal, aby otrzymać długość i ciężar profili stalowych użytych w projekcie.

2 All Storeys Total	71.7 71.7	al Weight (t) 12 12		
y Tables				
ι. ζ			Quantity Extraction Tables	
Section	Material	Total Length (m)		
CHS 114.3xb	5235	514.00568	Constants Question Extensions Table	
CHS 139.7X0	5235	31.4	 Concrete Quantity Extractions Table 	
CHS 139.7x8	5235	48.67906	Eormwork Quantity Table	
CHS 108.3X0	5230	10.7	O Formition Quantity Tuble	
CHS 1/7.8x10	5235	24.33978	Steel Quantity Extractions Table	
CHS 177.8x12	5235	8.11326		
CHS 177.8X8	5230	10.7	 Sneeting Quantity Extraction Table 	
CHS 193.7X12.0	5230	8.11320	Shear Stud Quantity Extraction Table	
CHS 193.7x8	5230	10.7		
CHS 219.1X3	5230	8.11320		
010 213 180	3230	02.0		
010 244.000	5230	10.7	2	Caladata
013 00.930	0230	410.9/03/	Hala	Calculate
012	0230	21.77008	нер	
014	5230	21.77608		
HEJUDA	32/5	110.8	6.440	
HE340A	52/5	0.05	0.119	
IPE240	52/5	0.00	7.002	
IPE2/0	5275	195.80002	1.002	
UPN200	5235	5/4.4	9.013	
UFINZZU	3235	0.100	10.77	

31

Uwaga:

W ProtaStructure modele stalowe nie zawierają połączeń (z wyjątkiem płyt fundamentowych). Elementy są łączone w węzłach konstrukcyjnych, co oznacza, że długości elementów mogą być mniej dokładne niż w ProtaSteel, gdzie wszystkie połączenia są precyzyjnie wstawione, a długości elementów są dostosowywane, aby uniknąć kolizji. W związku z tym listy materiałów stalowych w ProtaStructure stanowią jedynie przybliżoną wycenę do celów kosztorysowych.

Filtrowanie i postprocessing wyników analizy

ProtaStructure 2026 wprowadza ulepszoną funkcję filtrowania wyników analizy oraz postprocessingu, umożliwiając inżynierom efektywne wyodrębnianie maksymalnych sił spośród kombinacji oraz uzyskiwanie wzmocnionych wyników wynikających z analizy sejsmicznej i z uwzględnieniem redukcji obciążenia użytkowego. To usprawnienie optymalizuje przepływ pracy, pozwalając na bardziej precyzyjne i ukierunkowane oceny, co ostatecznie prowadzi do zoptymalizowanych projektów konstrukcyjnych oraz lepszych rezultatów realizacji projektów.

Wyniki dla wszystkich typów elementów

Wszystkie typy elementów są teraz dostępne do wyodrębnienia wyników w kategorii Elementy Konstrukcyjne.

Structural Members List Type Member Types 🗸		Select All	
Columns Ualls Beams Slabs Slabs Fraces	V21-1T1 LONG1-1D1 LONG2-1D1 LONG3-1D1 LONG4-1D1 LONG5-1D1	Analysis Results	
 Purlins Girts Trusses Steel Dome Frame Groups Frame Members Nodes Diaphragms 	LONG6-DD1 LONG7-DD1 LONG9-DD1 LONG9-DD1 LONG10-DD1 LONG10-DD1 LONG10-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW15-DD1 CRW20-DD1 CRW20-DD1 CRW22-DD1 CRW22-DD1 CRW22-DD1	Select the Model Elements Structural Members Frame Elements Shell Elements Nodes	P5 Purin-1P1 P6 Purin-1P1 P5 Purin-1P1 P9 Purin-1P1 P10 Purin-1P1 P11 Purin-1P1 P12 Purin-1P1 P13 Purin-1P1 P15 Purin-1P1 P15 Purin-1P1 P15 Purin-1P1 P15 Purin-1P1 P18 Purin-1P1 P19 Purin-1P1 P19 Purin-1P1

Automatyczne wyodrębnianie wartości maksymalnych oddziaływań

Teraz możesz wyodrębnić kombinacje z maksymalnymi oddziaływaniami. Aby to zrobić:

- 1. Zaznacz opcję "Wyświetl wyniki kombinacji tylko z maksymalnymi oddziaływaniami" i utwórz raport.
- 2. ProtaStructure automatycznie przeprowadzi postprocessing i w raporcie pokaże maksymalne dodatnie i ujemne wartości oddziaływań wraz z odpowiadającymi im kombinacjami obciążeń.

Analysis Results		- 0	>
Results			
Display Combination Results with Maximum Effects Only \checkmark	Load Cases	Unselect All	
L	RC Combinations	Steel Combination	IS
Unselect All			^
▼ N ▼ V2 ▼ V2			

Należy pamiętać, że ta funkcja filtruje unikatowe wyniki. Jeśli maksymalne wartości siły osiowej i siły tnącej pochodzą z tej samej kombinacji, to kombinacja ta zostanie wyświetlona tylko raz, co oszczędza czas i miejsce.

4 Member	Load	Type	N - i	V2 - i	V3 - i	M22 - i	M33 - i	T-i	N - j	V2 - j	V3 - j	M22 - j	M33 - j	T-j
5 1C39 Storey - 1	[32] G+Q+Hx	Column	-226.967	-9.49	4.0518	11.608	-27.4756	0.0048	-245.951	-9.49	4.0518	-6.625	15.2293	0.0048
6 1C39 Storey - 1	[8] G+Q+Ey++Hy	Column	-127.051	-0.6225	3.1318	8.8121	-1.5997	0.0227	-141.114	-0.6225	3.1318	-5.2808	1.2014	0.0227
7 Member	Load	Type	N - i	V2 - i	V3 - i	M22 - i	M33 - i	T-i	N - j	V2 - j	V3 - j	M22 - j	M33 - j	T - j
8 1C38 Storey - 1	[32] G+Q+Hx	Column	-146.578	-9.374	2.1687	6.2054	-27.2092	0.0048	-165.562	-9.374	2.1687	-3.5539	14.9737	0.0048
9 1C38 Storey - 1	[2] G+Qs1	Column	-93.7918	-2.2749	2.2164	6.3478	-6.5273	0.003	-112.776	-2.2749	2.2164	-3.6261	3.7096	0.003
0 1C38 Storey - 1	[8] G+Q+Ey++Hy	Column	-69.033	-1.5117	1.9173	5.3276	-4.4859	0.0227	-83.0955	-1.5117	1.9173	-3.3001	2.3167	0.0227
1 Member	Load	Type	N - i	V2 - i	V3 - i	M22 - i	M33 - i	T-i	N - j	V2 - j	V3 - j	M22 - j	M33 - j	T-j
2 1C37 Storey - 1	[32] G+Q+Hx	Column	-111.254	-6.5143	-1.1074	-3.1942	-18.9235	0.0048	-130.239	-6.5143	-1.1074	1.7892	10.3907	0.0048
3 1C37 Storey - 1	[2] G+Qs1	Column	-100.396	-4.3525	-1.1373	-3.2745	-12.5012	0.003	-119.38	-4.3525	-1.1373	1.8436	7.0852	0.003
4 1C37 Storey - 1	[8] G+Q+Ey++Hy	Column	-74.7647	-3.2515	-0.6131	-1.9324	-9.3459	0.0227	-88.8272	-3.2515	-0.6131	0.8268	5.286	0.0227
5 1C37 Storey - 1	[9] G+Q-Ey+-Hy	Column	-73.9806	-3.2187	-1.0675	-2.9092	-9.1925	-0.0174	-88.0431	-3.2187	-1.0675	1.8945	5.2916	-0.0174
6 Member	Load	Type	N - i	V2 - i	V3 - i	M22 - i	M33 - i	T-i	N - j	V2 - j	V3 - j	M22 - j	M33 - j	T-j
7 1C36 Storey - 1	[2] G+Qs1	Column	-112.04	15.4302	-1.995	-5.7456	44.581	0.003	-131.024	15.4302	-1.995	3.2318	-24.8549	0.003
8 1C36 Storey - 1	[32] G+Q+Hx	Column	-110.596	15.5159	-1.8961	-5.4741	44.6436	0.0048	-129.58	15.5159	-1.8961	3.0584	-25.178	0.0048
9 1C36 Storey - 1	[8] G+Q+Ey++Hy	Column	-86.4344	13.5486	-1.126	-3.4838	39.1302	0.0227	-100.497	13.5486	-1.126	1.5831	-21.8387	0.0227
0 1C36 Storey - 1	[11] G+Q-EyHy	Column	-78.7114	9.0859	-1.8858	-5.1837	26.3107	-0.017	-92.7739	9.0859	-1.8858	3.3026	-14.5758	-0.017
1 Member	Load	Type	N - i	V2 - i	V3 - i	M22 - i	M33 - i	T-i	N - j	V2 - j	V3 - j	M22 - j	M33 - j	T - j
2 1C35 Storey - 1	[2] G+Qs1	Column	-154.268	1.3744	6.9092	19.8066	4.0446	0.003	-173.252	1.3744	6.9092	-11.2848	-2.1401	0.003
1C35 Storey - 1	[32] G+Q+Hx	Column	-143.124	3.0884	6.8377	19.5925	8.8189	0.0048	-162.108	3.0884	6.8377	-11.1771	-5.0791	0.0048
4 1C35 Storey - 1	[26] G+Q+Wy+Ny	Column	-154.213	1.1875	6.9197	19.8203	3.6344	0.0056	-173.197	1.1875	6.9197	-11.3183	-1.7093	0.0056
5 1C35 Storey - 1	[8] G+Q+Ey++Hy	Column	-114.414	1.0911	5.2628	14.8861	3.3449	0.0227	-128.477	1.0911	5.2628	-8.7963	-1.5653	0.0227
6 Member	Load	Type	N - I	V2 - i	V3 - i	M22 - i	M33 - i	T-i	N-j	V2 - j	V3 - j	M22 - j	M33 - j	T-j
7 1C33 Storey - 1	[29] G+Q-Wy-Ny	Column	-88.6733	0.7816	0.8706	2.4793	2.4007	0.0042	-107.658	0.7816	0.8706	-1.4382	-1.1163	0.0042
8 1C33 Storey - 1	[32] G+Q+Hx	Column	-80.0962	2.4546	0.825	2.3415	6.9215	0.0048	-99.0805	2.4546	0.825	-1.3709	-4.1241	0.0048
9 1C33 Storey - 1	[2] G+Qs1	Column	-77.8964	0.9166	1.2907	3.6864	2.6817	0.003	-96.8808	0.9166	1.2907	-2.1215	-1.4432	0.003
00 1C33 Storey - 1	[8] G+Q+Ey++Hy	Column	-57.0559	0.9116	1.2715	3.4347	2.5063	0.0227	-71.1184	0.9116	1.2715	-2.2869	-1.5957	0.0227
1C33 Storey - 1	[10] G+O+Ev+Hv	Column	-57 1503	0 9485	1 2802	3 4473	2 6168	0.0223	-71 2128	0 9485	1 2802	-2 3137	-1 6513	0.0223

Uwaga:

Ta opcja jest szczególnie przydatna, gdy chcesz eksportować jedynie maksymalne efekty do innych programów, takich jak IdeaStatica. Nie musisz eksportować wyników do arkusza Excel i używać formuł lub makr, aby znaleźć maksymalne wartości efektów.

Wzmocnienia sejsmiczne i redukcja obciążenia użytkowego

Wyniki analizy z uwzględnieniem wzmocnień sejsmicznych oraz wyniki kombinacji z redukcją obciążenia użytkowego mogą być również automatycznie wyeksportowane w formie raportu. Dzięki temu otrzymujesz wyniki analizy spójne z wykresami, modułem postprocesora analizy oraz wartościami wyświetlanymi w interfejsie projektowania.

Opcja "Wyniki kombinacji tylko z efektami maksymalnymi" jest szczególnie przydatna, gdy chcesz skopiować reakcje podporowe do innego oprogramowania, takiego jak IdeaStatica.

Eksport obrazów z przezroczystym tłem

Jeśli potrzebujesz obrazów o wysokiej rozdzielczości ze swojego modelu ProtaStructure, przydatną funkcją jest możliwość eksportu obrazów w jakości plakatowej, dzięki silnikowi grafiki wektorowej ProtaStructure. W najnowszej wersji możesz teraz automatycznie usuwać tło podczas eksportu. Dzięki temu grafik będzie mógł korzystać z wysokiej jakości obrazów modelu z przezroczystym tłem.

II-	Building Se	tout Mode	elling Loading	Review	Analysis	Design	Drawings & Rep	ports BIM	Display Vie	ews He	alp		
IFC	IFC	DXF		-	1		R	IMG	STL	PDF	×	ġ/	R
IFC Import	Export IFC File	DXF Import	Export DXF/DWG File	SAF Import	SAF Export	Revit Import	BIM Integration Status	Export Image of Active View	Export STL File (3D Printer)	Export 3D PDF	Export to SAP2000	Export to ETABS	Export to OpenSEES
					BIM Links			-				Analysis Link	s

Strona - 75

Detalowanie żelbetu

Przekrój budynku

W ProtaStructure 2026 można generować przekroje z całego budynku.

Aby wygenerować przekrój budynku:

- 1. Utwórz na ekranie rysunek rzutu.
- 2. Wpisz polecenie "Przekrój budynku".

- 3. Otworzy się okno właściwości przekroju budynku. Edytuj parametry według potrzeb.
- 4. Narysuj linię na rzucie kondygnacji w miejscu, gdzie chcesz utworzyć przekrój.

F	Section	□ ×
-	3	
4	General	
	Label	A
	Show Intermediate Elements	>
	Show Level Marks	\checkmark
	Show Dimensions	
	Always Draw Horizontally	
	Show Member Labels	
4	Axes	
	Show Axes	~
	Show Axes Dimensions	\checkmark
4	Foundation Sections	
Í	Show Excavation Line	~
	Use Single Lean Concrete	
	Excavation Depth (Left)	120
	Excavation Depth (Right)	120
	Excavation Clearance	100
	Soil Shave Slope	2

Nowe wzory prętów giętych oraz prostych dla płyt żelbetowych

ProtaStructure już obsługuje symetryczny wzór prętów giętych do zbrojenia płyt. W nowej wersji w płytach można stosować również asymetryczne pręty gięte. Dodatkowo wprowadzono nowy wzór prętów prostych, który umożliwia zastosowanie zbrojenia górnego w obszarze rozpiętości.

Wzory zbrojenia płyt dostępne są w menu Opcje > Płyta > Zbrojenie.

Steel Bar Selection				hг
Slab Steel Pattern:	~~	 —	~_ ,≂	

_	S4 (50/50)		S6 (50/50)		S7 (56/56)
	K266 25/50		K267 25/50		K268 25/50
25/50	, , , , , , , , , , , , , , , , , , ,	25/50	J L	25/50	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0/40 010/40				ø10/40

Harmonogram zbrojenia belek fundamentowych, żeber oraz płyt betonowych

Belki fundamentowe, belki żeberkowe oraz zbrojenie płyt są teraz przejrzyście przedstawione w formie tabelarycznej, podobnie jak belki kondygnacyjne. Ułatwia to szybki przegląd zaprojektowanego zbrojenia.

Aby wygenerować zestawienie zbrojenia belek fundamentowych lub płyt:

1. Wybierz polecenie zestawienie zbrojenia belek, belek żebrowych lub płyty z menu rozwijalnego Prota Structure.

- 2. Jeśli wybrałeś Zestawienie zbrojenia belek, wybierz z listy kondygnację fundamentu (Kondygnacja 0).
- 3. Jeśli wybrałeś Zestawienie zbrojenia płyt, wybierz kondygnacje, dla których chcesz wygenerować harmonogram.
- 4. Wskaż punkt na ekranie, aby wstawić zestawienie.

F		- [-	1											μ.	the	-	ttr-
1		and and total	-	T	Ĩ.		212 Par	TT	-			1	L.,	1	1 1	TE		
I	VPE ET	END SP	AN	4.	-	TYPE INT -	NTERIOR SPA	IN	TY	E E2 - END SP	IN	TYPE	SS-SING	LE SPAN	TYPE	CA - CANT	LEVER TYP	E CB - CANTILEY
									Concrete Beam	Rebar Schedule	St. [0]							
		Beam				1	op Reinforcemer	153	80	tiom Reinforceme	119		Links			Remarks	St	rip Footing
Mark	Wdth (cm)	Depth (cm)	Span (cm)	Type	Hanger	Left	Center	Right	Left	Center	Right	Left	Center	Right	Side Ears	Smlar	Main Bar	Distribution Bar
FOTA	80.00	90.00	100.00	CA	9015			9016				205/11	208/11	208/11	2016	-	4014/20	648/20
F01	80.00	90.00	905.00	INT	9016	9016	17a16				23016	208/8	208/20	208/8	1012		44a14/20	608/20
F02	80.00	90.00	906.00	INT	9015		17015	9816	23ø16			208/8	208/20	208/8	1012		44814/20	6#8/20
02A	80.00	90.00	100.00	CA	9015	9016						208/11	208/11	208/11	2016		4014/20	608/20
4101	60.00	20.00	100.00	CA	6.416			Ea16		-		2+8/11	245/11	2+2/11	2+14	-	4+14/20	848/20
FOR	60.00	70.00	500.00	INT	7416	Ea16	tEat6	1010			18ats	288/6	248/20	2026	1019		29a14/20	848/20
FOA	60.00	70.00	700.00	INT	7816		14416		18416		19016	208/6	208/20	208/6	-		34+14/20	808/20
F05	60.00	70.00	500.00	INT	7815		14016	5016	19a16			208/5	2#8/20	208/5			24a14/20	848/20
05A	60.00	70.00	100.00	CA	7015	5016						208/11	208/11	208/11	2015		4814/20	8#8/20
06A	60.00	70.00	100.00	CA	7015			5016			2016	208/11	228/11	208/11	2016		4814/20	8#8/20
F06	60.00	70.00	600.00	INT	5016	5016	16016	000000	2016			208/8	208/20	208/8			29014/20	808/20
F07	60.00	70.00	300.00	INT	5016		10016					208/11	208/20	208/11	2014	-	14a14/20	808/20
OF08	60.00	70.00	400.00	E2	5016		28016		_			288/5	2#8/20	208/5			19814/20	8#8/20
100.8	80.00	00.00	1+00.00	C.A.	Anti		-	Call			Aut.	2.0/14	1.0.0.00	242144	Catil		4+14/20	04100
COSA CT OD	00.00	90.00	100.00	CA	9010	0.45	20.45	5016	2.44		2014	20011	200/11	200/11	2010		4814/20	906/20
07.09	00.00	90.00	300.00	IN C	9010	9010	30010	1010	2014		20010	200/5	200/20	200/0	1012	-	44314/20	900/20
5454	80.00	90.00	100.00	INI CA	9010	1010	10010	3010	23010			200/5	200/20	200/0	1012	-	34814/20	900/20
F 198	00.00	1.30.00	1100.00	UA.	7010	2010						20011	200/11	499/11	6819		4214/20	789.20
E118	60.00	20.00	1100.00	CA	Ea 16		1	Sati C	1			2x8/11	2alitt	2x8/11	tati	1	4+14/20	848/20
E44	60.00	70.00	600.00	INT	Cate	Eats	tRat6					2+8/10	2+8/20	2+2/10	18.19		20e14/20	848/20
F12	60.00	70.00	400.00	INT	Sate	2010	Salf				2014	20211	288/20	288/11			19a14/20	848/20
(F13	60.00	70.00	500.00	INT	5a16		5a16	5#16	2a14			208/11	288/20	268/11			24a14/20	848/20
F13A	60.00	70.00	100.00	CA	5016	5ø16						228/11	208/11	208/11	1016		4014/20	808/20
	10 10						11	14								15 20		
E14A	60.00	70.00	100.00	CA	5016			5016	-		3014	2#8/11	208/11	208/11	1016	_	4a14/20	808/20
CF14	60.00	70.00	1000.00	INT	6016	5016	19016	-	3014		17016	208/10	208/20	208/10	_	-	49014/20	808/20
KF15	60.00	70.00	700.00	INT	6016		12016	5016	17016		S. MUSSEL	208/9	208/20	208/9		-	34014/20	808/20
F15A	60.00	70.00	100.00	CA	6016	5016						208/11	208/11	208/11	2014		4014/20	808/20
E 12.8	60.00	20.00	100.00	CA.	Ca12		-	Eatt	1		-	240/64	202111	242111	tati	-	Au14/20	242/20
112A	60.00	20.00	100.00	INT	Ea16	Eath	Eath		-			200(11	208/11	2#8/11	taté		14a14/20	1at/20
E 47	60.00	70.00	100 000	INT	Eath	2010	12016	Catil.			2014	202/2	202/20	202/8	-212		10+14/20	848/20
F17A	60.00	70.00	100.00	CA	6016	5016	-4010	010	2014		1014	2#8/11	208/11	208/11	2014		4014/20	808/20
																_		
F18A	60.00	70.00	100.00	CA	5016			5016				228/11	208/11	208/11	1015		4#14/20	608/20
KF18	60.00	70.00	400.00	INT	5016	5016	10016	5016				228/11	2#8/20	208/11			19014/20	6#8/20
(F12R	60.00	70.00	100.00	CA	5016	5016						208/11	208/11	208/11	1#15		4014/20	6#8/20

😢 PROTA SOFTWARE

Detale ścian podpiwniczenia

Projektowanie zbrojenia ścian podpiwniczenia NIE jest generowane przez ProtaStructure. Oczekuje się, że użytkownik sam wprowadzi informacje dotyczące zbrojenia podłużnego i poziomego. Na tej podstawie tworzone są rysunki detali. Informacje o zbrojeniu ścian podziemnych można wprowadzić za pomocą zakładki "Zbrojenie" w oknie właściwości ściany.

Detale tych ścian można wygenerować za pomocą poleceń Widoki ścian, schematy ścian lub schemat słupa w programie ProtaDetails. Do tych kategorii dodano poziom fundamentu, aby umożliwić rysowanie detali ścian podpiwniczenia.

陊 PROTA SOFTWARE

Detale postumentów

Po zaprojektowaniu postumentów w ProtaStructure, możesz przesłać je do ProtaDetails w celu wykonania zbrojenia żelbetowego, tak jak w przypadku innych elementów żelbetowych. Do wygenerowania szczegółów postumentów możesz użyć polecenia Widoki słupów oraz schematy słupów. Do tych kategorii została dodana kondygnacja fundamentu właśnie w tym celu.

6ø8/15 L=185 (Kanca:12)

12:12

D

.

Możesz użyć ProtaSteel, aby uzyskać rysunki detali kotew postumentów ze stalowymi płytami podstawy zdefiniowanymi na ich szczycie.

Innowacje w Prota Steel

Eksport sił wewnętrznych do IdeaStatica

W poprzedniej wersji wprowadziliśmy funkcję eksportu do IdeaStatica, która spotkała się z bardzo pozytywnym odbiorem wśród użytkowników. W tej wersji udoskonaliliśmy ją, umożliwiając eksport sił wewnętrznych działających na połączenia do IdeaStatica w formacie tabelarycznym.

						Loads Export New
						🗮 🕄 22 × 🛱 🕢 🗊 🗊 🐨 👍 🞧
		_				Production cost - 208 €
	Import of I					×
	Name	Member	Position	N [kN]	Vy [kN]	
	LEI	M182	Begin	0.0	0.0	File Home Insert Page Layout Formulas Data Review View Q Tell me v
A		M203	End	0.0	0.0	
		M197	End	0.0	0.0	- Format Painter
	LE2	M182	Begin	0.0	0.0	Clipboard Ta Font Ta Alignment
		N4202	End	0.0	0.0	A2 * : × ✓ fr 1.2G+1.6Q
		IVI203	Eng	0.0	0.0	A B C D E F G H I
		M197	End	0.0	0.0	1 Load Beam Position N[kN] Vy[kN] Vz[kN] Mz[kNm] My[kNm] Mx[kNm]
	LE3	M182	Begin	0.0	0.0	2 1.2G+1.6Q M182 Begin -0.002956 0.000424 -0.000448 0 -0.735747 -0.831715
	100	64202	End	0.0	0.0	4 1.2G+1.6Q M197 End -0.000425 0.001267 0 0 0.863224 0
		IVI205	LING	0.0	0.0	5 1.2G+1.6Q M182 Begin -0.002956 0.000424 -0.000448 0 -0.735747 -0.831715
		M197	End	0.0	0.0	6 1.2G+1.6Q M203 End -0.000448 0.001267 0 0 0.965893 0
	LE4	M182	Begin	0.0	0.0	7 1.26+1.60 M197 End -0.000425 0.001267 0 0 0.803224 0 8 1.26+1.65 M182 Begin -0.002956 0.000424 -0.000448 0 -0.735747 -0.8317157
		M203	End	0.0	0.0	9 1.2G+1.6S M203 End -0.000448 0.001267 0 0 0.965893 0
		TTESS	Lind	,010		10 1.2G+1.6S M197 End -0.000425 0.001267 0 0 0.863224 0
		M197	End	0.0		11 1.2G+Q M182 Begin -0.002956 0.000424 -0.000448 0 -0.735747 -0.831715
	LE5	M182	Begin	0.0	0.	13 1 2G+O M197 End _0.000425 0.001267 0 0 0.503855 0
		100.000		1000		1.2G+Q+1.M182 Begin -0.002956 0.000424 -0.000448 0 -0.735747 -0.831715
M182		M203	End	0.0	0.0	5 1.2G+Q+1. M203 End -0.000448 0.001267 0 0 0.965893 0
		M197	End	0.0	0.0	16 1.2G+Q+1.M197 End -0.000425 0.001267 0 0 0.863224 0
		10000000	- Contraction of the Contraction		0	- 17 1.4G M182 Begin -0.003449 -0.000496 0.000521 0 0.85837 0.970335
						18 1.4G M203 End -0.000522 0.001478 0 0 1.126875 0
						19 1.4G M197 End -0.000496 0.001478 0 0 1.007094 0
						20 1.4G+1.6Q M182 Begin 0 0 0 0 0 0 0
						2211.4G+1.6Q M203 End 0 0 0 0 0 0 0
						23146+1.60 M182 Begin 0 0 0 0 0 0
						24 1.46+1.60 M203 End 0 0 0 0 0 0
						25 1.4G+1.6Q M197 End 0 0 0 0 0 0

陊 PROTA SOFTWARE

Połączenia płatwi na belkach giętych

Połączenie płatwi na belkach giętych można teraz łatwo wykonać za pomocą makra połączenia płatwi. Makro połączenia płatwi obsługuje różne typy połączeń. Narzędzia IntelliConnect można również wykorzystać do szybszego tworzenia połączeń.

Połączenia wzdłużne dla profili rurowych

W ProtaSteel 2026 szczegóły połączeń wzdłużnych dla profili rurowych można łatwo tworzyć za pomocą makra "Połączenie wzdłużne blachy końcowej". W oknie właściwości makra można dostosować liczbę śrub oraz ich rozmieszczenie po wybraniu opcji "ustawienia przekroju kołowego".

🜔 PROTA SOFTWARE

Połączenia z przykładki środnika do głównych elementów SHS i RHS

Połączenia z przykładki środnika do głównych elementów SHS i RHS można teraz łatwo tworzyć w ProtaSteel 2026. Makro umożliwia szybkie i precyzyjne zaprojektowanie tego typu połączeń, uwzględniając różne konfiguracje oraz parametry śrub i spoin.

Makra połączeń dla górnych i dolnych pasów kratownic

W ProtaSteel 2026 połączenia kratownic z kratownicami oraz kratownic ze słupami są obsługiwane za pomocą połączeń belka-belka i belka-słup, takich jak: belka do słupa z blachą czołową, blacha czołowa z usztywnieniem, blacha przykładki środnika, kątownik łączący belki oraz blacha czołowa łącząca belki. Te połączenia można stosować zarówno w kierunku silnym, jak i słabym.

Wsparcie IFC4

ProtaSteel V2026 obsługuje format IFC4. Wszystkie obiekty detaliczne oraz cały model utworzony w ProtaSteel można wyeksportować do pliku IFC. Dzięki temu możesz uczestniczyć w procesach realizacji projektu, korzystając z globalnie akceptowanych plików IFC.

Ulepszone połączenia belek zagiętych

Teraz można obsługiwać więcej przypadków związanych z belkami giętymi, w tym szerszy zakres kątów podejścia oraz połączenia płatwi z belkami krzywoliniowymi.

Ogólne usprawnienia stabilności i wydajności.

Na podstawie naszych procedur kontroli jakości oraz opinii użytkowników, wprowadzono istotne usprawnienia stabilności i wydajności we wszystkich produktach z rodziny 2025. Większość z tych poprawek oraz nowych funkcji została udostępniona w ciągu roku w ramach aktualizacji serwisowych ProtaStructure 2025. Szczegóły tych aktualizacji można znaleźć w sekcji "Release Notes" w naszym centrum pomocy, wraz z odniesieniami do odpowiednich zgłoszeń klientów.

Co dalej?

Chociaż staramy się uwzględniać jak najwięcej usprawnień w każdej głównej wersji, niektóre elementy mogą zostać opóźnione i pojawić się dopiero po premierze. Możesz być pewien, że zobowiązujemy się dostarczyć je w kolejnych aktualizacjach użytkownikom z aktywną umową serwisową.

Thank You

Thank you for choosing the ProtaStructure Suite product family.

At Prota, our continual aim is to provide you with user-friendly, industry-leading technology for building design and documentation.

Should you have any technical support requests or questions, please do not hesitate to contact us at all times through globalsupport@protasoftware.com or asiasupport@protasoftware.com (Asia Pacific)

Our dedicated online support center is available to help you get the most out of Prota's technology solutions with our responsive technical support team.

The Prota Team

